• Title/Summary/Keyword: Silicon surfaces

Search Result 272, Processing Time 0.026 seconds

Tribological properties of sputtered boron carbide coating and the effect of $CH_4$ reactive component of processing gas

  • Cuong Pham Duc;Ahn Hyo-Sok;Kim Jong-Hee;Shin Kyung-Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.78-84
    • /
    • 2003
  • Boron carbide thin coatings were deposited on silicon wafers by DC magnetron sputtering using a $B_4C$ target with As as processing gas. Various amounts of methane gas $(CH_4)$ were added in the deposition process to better understand their influence on tribological properties of the coatings. Reciprocating wear tests employing an oscillating friction wear tester were performed to investigate the tribological behaviors of the coatings in ambient environment. The chemical characteristics of the coatings and worn surfaces were studied using X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). It revealed that $CH_4$ addition to As processing gas strongly affected the tribologcal properties of sputtered boron carbide coating. The coefficient of friction was reduced approximately from 0.4 to 0.1, and wear resistance was improved considerably by increasing the ratio of $CH_4$, gas component from 0 to $1.2\;vol\;\%$. By adding a sufficient amount of $CH_4\;(1.2\%)$ in the deposition process, the boron carbide coating exhibited lowest friction and highest wear resistance.

  • PDF

Molecular-scale Structure of Pentacene at Functionalized Electronic Interfaces

  • Seo, Soon-Joo;Peng, Guowen;Mavrikakis, Manos;Ruther, Rose;Hamers, Robert J.;Evans, Paul G.;Kang, Hee-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.299-299
    • /
    • 2011
  • A dipolar interlayer can cause dramatic changes in the device characteristics of organic field-effect transistors (OFETs) or photovoltaics. A shift in the threshold voltage, for example, has been observed in an OFET where the organic semiconductor active layer is deposited on SiO2 modified with a dipolar monolayer. Dipolar molecules can similarly be used to change the current-voltage characteristics of organic-inorganic heterojunctions. We have conducted a series of experiments in which different molecular linkages are placed between a pentacene thin film and a silicon substrate. Interface modifications with different linkages allow us to predict and examine the nature of tunneling through pentacene on modified Si surfaces with different dipole moment. The molecular-scale structure and the tunneling properties of pentacene thin films on modified Si (001) with nitrobenzene and styrene were examined using scanning tunneling spectroscopy. Electronic interfaces using organic surface dipoles can be used to control the band lineups of a semiconductor at organic/inorganic interfaces. Our results can provide insights into the charge transport characteristics of organic thin films at electronic interfaces.

  • PDF

Mechanical Properties of Cf/SiC Composite Using a Combined Process of Chemical Vapor Infiltration and Precursor Infiltration Pyrolysis

  • Kim, Kyung-Mi;Hahn, Yoonsoo;Lee, Sung-Min;Choi, Kyoon;Lee, Jong-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.392-399
    • /
    • 2018
  • $C_f/SiC$ composites were prepared via a process combining chemical vapor infiltration (CVI) and precursor infiltration pyrolysis (PIP), wherein silicon carbide matrices were infiltrated into 2.5D carbon preforms. The obtained composites exhibited porosities of 20 vol % and achieved strengths of 244 MPa in air at room temperature and 423 MPa at $1300^{\circ}C$ under an Ar atmosphere. Carbon fiber pull-out was rarely observed in the fractured surfaces, although intermediate layers of pyrolytic carbon of 150 nm thickness were deposited between the fiber and matrix. Fatigue fracture was observed after 1380 cycles under 45 MPa stress at $1000^{\circ}C$. The fractured samples were analyzed by transmission electron microscopy to observe the distributed phases.

Reaction of Tri-methylaluminum on Si (001) Surface for Initial Aluminum Oxide Thin-Film Growth

  • Kim, Dae-Hee;Kim, Dae-Hyun;Jeong, Yong-Chan;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3579-3582
    • /
    • 2010
  • We studied the reaction of tri-methylaluminum (TMA) on hydroxyl (OH)-terminated Si (001) surfaces for the initial growth of aluminum oxide thin-films using density functional theory. TMA was adsorbed on the oxygen atom of OH due to the oxygen atom’s lone pair electrons. The adsorbed TMA reacted with the hydrogen atom of OH to produce a di-methylaluminum group (DMA) and methane with an energy barrier of 0.50 eV. Low energy barriers in the range of 0 - 0.11 eV were required for DMA migration to the inter-dimer, intra-dimer, and inter-row sites on the surface. A unimethylaluminum group (UMA) was generated at each site with low energy barriers in the range of 0.21 - 0.25 eV. Among the three sites, the inter-dimer site was the most probable for UMA formation.

CMP Slurry Induction Properties of Silicate Oxides Deposited on Silicon Wafer (실리콘 웨이퍼위에 증착된 실리케이트 산화막의 CMP 슬러리 오염 특성)

  • 김상용;서용진;이우선;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.2
    • /
    • pp.131-136
    • /
    • 2000
  • We have investigated the slurry induced metallic contaminations of undoped and doped silicate oxides surface on CMP cleaning process. The metallic contaminations by CMP slurry were evaluated in four different oxide films, such as plasma enhanced tetra-ethyl-orthyo-silicate glass(PE-TEOS), O3 boro-phos-pho-silicate glass(O3-BPSG), PE-BPSG, and phospho-silicate glass(PSG). All films were polished with KOH-based slurry prior to entering the post-CMP cleaner. The Total X-Ray fluorescence(TXRF) measurements showed that all oxide surfaces are heavily contaminated by potassium and calcium during polishing which is due to a CMP slurry. The polished O3-BPSG films presented higher potassium and calcium contaminations compared to PE-TEOS because of a mobile ions gettering ability of phosphorus. For PSG oxides, the slurry induced mobile ion contamination increased with an increase of phosphorus contents. In addition, the polishing removal rate of PSG oxides had a linear relationship as a function of phosphorus contents.

  • PDF

The passivation of III-V compound semiconductor surface by laser CVD (Laser CVD법에 의한 III-V화합물 반도체 표면의 불활성화)

  • Lee, H.S.;Lee, K.S.;Cho, T.H.;Huh, Y.J.;Kim, S.J.;Sung, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1274-1276
    • /
    • 1993
  • The silicon-nitride films formed by laser CVD method are used for passivating GaAs surfaces. The electrical Properties of metal-insulator-GaAs structure are studied to determined the interfacial characteristics by C-V curves and deep level transient spectroscopy(DLTS). The SiN films are photolysisly deposited from $SiH_4\;and\;NH_3$ in the range of $100^{\circ}C-300^{\circ}C$ on P type, (100) GaAs. The hysteresis is reduced and interface trap density is lowered to $10^{12}-10^{13}$ at $100^{\circ}C-200^{\circ}C$. The surface leakage current is studied too. The passivated GaAs have a little leakage current compared to non passivated GaAs.

  • PDF

Alignment Effect of Liquid Crystal on new organics thin film using Ultraviolet Exposure method (UV 조사법을 이용한 새로운 무기박막 표면에 액정 배향 효과)

  • Hwang, Jeoung-Yeon;Kang, Hyung-Ku;Choi, Sung-Ho;Oh, Byeong-Yun;Ham, Moon-Ho;Myoung, Jae-Min;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.62-65
    • /
    • 2005
  • We studied the nematic liquid crystal (NLC) alignment capability by the Ultraviolet (UV) alignment method on a-C:H thin-films, and investigated electro-optical performances of the UV aligned twisted nematic (TN)-liquid crystal display (LCD) with the UV exposure on a-C:H thin film surface. A good LC alignment by UV irradiation on a-C:H thin-film surfaces was achieved. Monodomain alignment of the UV aligned TN-LCD can be observed. The good electro-optical (EO) characteristics of the UV aligned TN-LCD was observed with oblique UV exposure on the a-C:H thin film surface for 1min.

  • PDF

Chemical Vapor Deposition of Inorganic Thin Films using Atmospheric Plasma : A Review of Research Trend (상압 플라즈마를 이용한 무기박막의 화학기상 증착법에 대한 연구동향)

  • Kim, Kyong Nam;Lee, Seung Min;Yeom, Geun Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.5
    • /
    • pp.245-252
    • /
    • 2015
  • In recent years, the cleaning and activation technology of surfaces using atmospheric plasma as well as the deposition technology for coating using atmospheric plasma have been demonstrated conclusively and drawn increasing industrial attention. Especially, due to the simplicity, the technology using atmospheric plasma enhanced chemical vapor deposition has been widely studied from many researchers. The plasma source type commonly used as the stabilization of diffuse glow discharges for atmospheric pressure plasma enhanced chemical vapor deposition pressure is the dielectric barrier discharge. In this review paper, some kinds of modified dielectric barrier discharge type will be presented. And, the characteristics of silicon based compound such as SiOx and SiNx deposited using atmospheric plasma enhanced chemical vapor system will be discussed.

Sintered properties of silicon carbide prepared by using the alumina and yttria-coated SiC powder (알루미나 및 이트리아로 코팅된 분말을 사용하여 제조한 탄화규소의 소결물성)

  • Um, Ki-Young;Kim, Hwan;Kang, Hyun-Hee;Lee, Jong-Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.645-650
    • /
    • 1998
  • Alumina- and yttria-coated SiC powder was prepared by the surface-induced precipitation method, and sintered properties of silicon carbide prepared from this powder were investigated. After a well dispersion of SiC powders in the aqueous solution of $Al_2(SO_4)_3$ and $Y_2(SO_4)_3$, the mixed precursors of aluminum hydroxide, aluminum carbonate, yttrium hydroxide, and yttrium carbonate were precipitated on the surfaces of SiC particles through the hydrolysis reaction of urea. SiC specimens with alumina and yttria exhibit, 97.8% of theoretical density after the sintering at $1900^{\circ}C$ for 2 hrs. During annealing at $2000^{\circ}C$, $\beta$longrightarrow$\alpha$ phase transformation of SiC had taken place and resulted with a rodlike microstructure. Toughness of sintered SiC was enhanced by crack deflection around the rodlike grains. In case of annealing less than that of 3 hr, the fracture toughness of SiC was slightly improved with increasing the amount of sintering aid. However, annealed specimens for a long time showed constant fracture toughness even though the amount of sintering aid increased. It is resulted that the main factor for toughening in annealed SiC for a long time is the pullout effect of rodlike grains during the propagation of cracks, and the amount of sintering aids is less effective on the fracture toughness of SiC.

  • PDF

Microstructure and mechanical properties in hot-forged liquid-phase-sintered silicon carbide (고온단조에 의한 액상소결 탄화규소의 미세구조 및 기계적 특성)

  • Roh, Myong-Hoon;Kim, Won-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.1943-1948
    • /
    • 2010
  • Two kind of $\beta$-SiC powders of different particle sizes (${\sim}1.7\;{\mu}m$ and ${\sim}30\;nm$), containing 7 wt% $Y_2O_3$, 2 wt% $Al_2O_3$ and 1 wt% MgO as sintering additives, were prepared by hot pressing at $1800^{\circ}C$ for 1 h under applied pressures, and then were hot-forged at $1950^{\circ}C$ for 6 h under 40 MPa in argon. All the hot-pressed specimens consisted of equiaxed grains and were developed grain growth after hot-forging. The smaller starting powder was developed the finer microstructure. The microstructures on the surfaces parallel and perpendicular to the pressing direction of the hot-forged SiC were similar to each other, and no texture development was observed because of the lack of massive $\beta$ to $\sigma$ phase transformation of SiC. The fracture toughness (${\sim}3.9\;MPa{\cdot}m^{1/2}$), hardness (~ 25.2 GPa) and flexural strength (480 MPa) of hot-forged SiC using larger starting powder were higher than those of the other.