Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.12.3579

Reaction of Tri-methylaluminum on Si (001) Surface for Initial Aluminum Oxide Thin-Film Growth  

Kim, Dae-Hee (Department of Materials Engineering, Korea University of Technology and Education)
Kim, Dae-Hyun (Department of Materials Engineering, Korea University of Technology and Education)
Jeong, Yong-Chan (Department of Materials Engineering, Korea University of Technology and Education)
Seo, Hwa-Il (School of Information Technology, Korea University of Technology and Education)
Kim, Yeong-Cheol (Department of Materials Engineering, Korea University of Technology and Education)
Publication Information
Abstract
We studied the reaction of tri-methylaluminum (TMA) on hydroxyl (OH)-terminated Si (001) surfaces for the initial growth of aluminum oxide thin-films using density functional theory. TMA was adsorbed on the oxygen atom of OH due to the oxygen atom’s lone pair electrons. The adsorbed TMA reacted with the hydrogen atom of OH to produce a di-methylaluminum group (DMA) and methane with an energy barrier of 0.50 eV. Low energy barriers in the range of 0 - 0.11 eV were required for DMA migration to the inter-dimer, intra-dimer, and inter-row sites on the surface. A unimethylaluminum group (UMA) was generated at each site with low energy barriers in the range of 0.21 - 0.25 eV. Among the three sites, the inter-dimer site was the most probable for UMA formation.
Keywords
Tri-methylaluminum; ALD; Silicon surface; Density function theory;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Heyman, A.; Musgrave, C. B. J. Phys. Chem. B 2004, 108, 5718.   DOI   ScienceOn
2 Halls, M. D.; Raghavachari, K. J. Phys. Chem. B 2004, 108, 4058.   DOI   ScienceOn
3 Halls, M. D.; Raghavachari, K.; Frank, M. M.; Chabal, Y. J. Phys. Rev. B 2003, 68, 161302.   DOI   ScienceOn
4 Ghosh, M. K.; Choi, C. H. Chem. Phys. Lett. 2006, 426, 365.   DOI   ScienceOn
5 Lee, S. S.; Baik, J. Y.; An, K. S.; Suh, Y. D.; Oh, J. H.; Kim, Y. J. Phys. Chem. B 2004, 108, 15128.   DOI   ScienceOn
6 Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558   DOI   ScienceOn
7 Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251.   DOI   ScienceOn
8 Kresse, G.; Furthmuller, J. Comput. Mat. Sci. 1996, 6, 15.   DOI   ScienceOn
9 Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169.   DOI   ScienceOn
10 Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.   DOI   ScienceOn
11 Wood, D. M.; Zunger, A. J. Phys. A 1985, 18, 1343.   DOI   ScienceOn
12 Pulay, P. Chem. Phys. Lett. 1980, 73, 393.   DOI   ScienceOn
13 Sheppard, D.; Terrell, R.; Henkelman, G. J. Chem. Phys. 2008, 128, 134106.   DOI   ScienceOn
14 Kim, D.-H.; Kim, D.-H.; Seo, H.-I.; Kim, Y.-C. Trans. Electric. & Electron. Mater. 2010, 11, 11.   DOI   ScienceOn
15 Wilk, G. D.; Wallace, R. M.; Anthony, J. M. J. Appl. Phys. 2001, 89, 5243.   DOI   ScienceOn
16 Klein, T. M.; Niu, D.; Epling, W. S.; Li, W.; Maher, D. M.; Hobbs, C. C.; Baumvol, I. J. R.; Parsons, G. N. Appl. Phys. Lett. 1999, 75, 4001.   DOI   ScienceOn
17 Jeon, T. S.; White, J. M.; Kwong, D. L. Appl. Phys. Lett. 2001, 78, 368.   DOI   ScienceOn
18 Guha, S.; Gusev, E. P.; Okorn-Schmidt, H.; Copel, M.; Ragnarsson, L.$-{\AA}$; Bojarczuk, N. A.; Ronsheim, P. Appl. Phys. Lett. 2002, 81, 2956.   DOI   ScienceOn
19 Sayan, S.; Garfunkel, E.; Nishimura, T.; Schulte, W. H.; Gustafsson, T.; Wilk, G. D. J. Appl. Phys. 2003, 94, 928.   DOI   ScienceOn
20 Copel, M.; Cartier, E.; Gusev, E. P.; Guha, S.; Bojarczuk, N.; Poppeller, M. Appl. Phys. Lett. 2001, 78, 2670.   DOI   ScienceOn
21 Yu, X.; Zhu, C.; Yu, M. Appl. Phys. Lett. 2006, 89, 163508.   DOI   ScienceOn
22 Rhee, S. J.; Lee, J. C. Microelectron. Reliability 2005, 45, 1051.   DOI   ScienceOn
23 Groner, M. D.; Fabreguette, F. H.; Elam, J. W.; George, S. M. Chem. Mater. 2004, 16, 639.   DOI   ScienceOn
24 Ritala, M.; Kukli, K.; Rathu, A.; Raisanen, P. I.; Leskelä, M.; Sajavaara, T.; Leinonen, J. Science 2000, 288, 319.   DOI   ScienceOn
25 Georges, S. M.; Ott, A. W.; Klaus, J. W. J. Phys. Chem. 1996, 100, 13121.   DOI   ScienceOn
26 Ye, P. D.; Wilk, G. D.; Kwo, J.; Yang, B.; Gossmann, H.-J. L.; Chu, S. N. G.; Mannaerts, J. P.; Sergent, M.; Hong, M.; Ng, K. K.; Bude, J. IEEE Electron Dev. Lett. 2003, 24, 209.   DOI   ScienceOn
27 Manchanda, L.; Morris, M. D.; Green, M. L.; van Dover, R. B.; Klemens, F.; Sorsch, T. W.; Silverman, P. J.; Wilk, G.; Busch, B.; Aravamudhan, S. Microelectron. Eng. 2001, 59, 351.   DOI   ScienceOn
28 Widjaja, Y.; Musgrave, C. B. Appl. Phys. Lett. 2002, 80, 3304.   DOI   ScienceOn
29 Koh, M.; Mizubayashi, W.; Iwamoto, K.; Murakami, H.; Ono, T. IEEE Trans. Electron Dev. 2001, 48, 259.   DOI   ScienceOn
30 Colinge, J.-P. Solid State Electron 2004, 48, 897.   DOI   ScienceOn
31 Front End Processes, International Technology Roadmap for Semiconductors; 2003.
32 Lin, C.; Zhang, N.; Shen, Q. Metals & Mat. Inter. 2004, 10, 475.   DOI   ScienceOn
33 Kim, W. S.; Kawahara, T.; Itoh, H.; Horiuchi, A.; Muto, A.; Maeda, T.; Mitsuhashi, R.; Torii, K.; Kitajima, H. Jap. J. Appl. Phys. 2004, 43, 1860.   DOI