Browse > Article
http://dx.doi.org/10.5762/KAIS.2010.11.6.1943

Microstructure and mechanical properties in hot-forged liquid-phase-sintered silicon carbide  

Roh, Myong-Hoon (Department of Materials Science and Engineering, University of Seoul)
Kim, Won-Joong (Department of Materials Science and Engineering, University of Seoul)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.11, no.6, 2010 , pp. 1943-1948 More about this Journal
Abstract
Two kind of $\beta$-SiC powders of different particle sizes (${\sim}1.7\;{\mu}m$ and ${\sim}30\;nm$), containing 7 wt% $Y_2O_3$, 2 wt% $Al_2O_3$ and 1 wt% MgO as sintering additives, were prepared by hot pressing at $1800^{\circ}C$ for 1 h under applied pressures, and then were hot-forged at $1950^{\circ}C$ for 6 h under 40 MPa in argon. All the hot-pressed specimens consisted of equiaxed grains and were developed grain growth after hot-forging. The smaller starting powder was developed the finer microstructure. The microstructures on the surfaces parallel and perpendicular to the pressing direction of the hot-forged SiC were similar to each other, and no texture development was observed because of the lack of massive $\beta$ to $\sigma$ phase transformation of SiC. The fracture toughness (${\sim}3.9\;MPa{\cdot}m^{1/2}$), hardness (~ 25.2 GPa) and flexural strength (480 MPa) of hot-forged SiC using larger starting powder were higher than those of the other.
Keywords
Grain size; Hot-forged ceramics; Microstructure; Mechanical properties; Silicon carbide;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall: Indentation techniques for measuring toughness of ceramics, Proceedings - Australian Ceramic Conference , 32-34, 1980.
2 L. S. Sigl and H. J. Kleebe:
3 Y.-W. Kim. M. Mitomo, and G. D. Zhan: Mechanism of grain growth in liquid-phase-sintered $\beta-SiC$, J. Mater. Res. 14, 4291-4293, 1999.   DOI
4 I. Amato: The effect of gas trapped within pores during sintering and density regression of ceramic bodies, Mater. Sci. Eng. 7, 49-53, 1971.   DOI
5 Y.-W. Kim, M. Mitomo, H. Emoto, and J.-G. Lee: Effect of initial $\alpha-phase$ content on microstructure and mechanical properties of sintered silicon carbide, J. Am. Ceram. Soc. 81, 3136-3140, 1998.   DOI
6 S.-G. Lee, Y.-W. Kim, M. Mitomo: Relationship between microstructure and fracture toughness of toughened silicon carbide ceramics, J. Am, Ceram. Soc., 84, 1347-1353, 2001.
7 RW. Rice, CC. Wu, B. Fred: Hardness-graing-size relations in ceramics, J. Am. Ceram. Soc., 77, 2539-2553, 1994.   DOI
8 C. Strehler, G. Blugan, B. Ehrle, B. Speisser, T. Graule, J. Kuebler: Influence of sintering and sintering additives on the mechanical and microstructural characteristics of $Si_3N_4$/SiC wood cutting tools, J. Europ. Ceram. Soc., article in press.
9 Y. Shinoda, T. Nagano, H. Gu, and F. Wakai: Superplasticity of silicon carbide, J. Am. Ceram. Soc. 82, 2916-2918, 1999.
10 T. Nagano, K. Kaneko, G. D. Zhan, M. Mitomo, and Y.-W. Kim: Superplastic behavior of liquid-phase sintered $\beta-SiC$ prepared with oxynitride glasses in an N2 atmosphere, J. Europ. Ceram. Soc. 22, 263-270, 2002.   DOI
11 T. Nagano. H. Gu, K. Kaneko, G. D. Zhan, and M. Mitomo: Effect of Dynamic Microstructural Change on Deformation Behavior in Liquid-Phase-Sintered Silicon Carbide with $Al_2O_3-Y_2O_3-CaO$ Additions, J. Am. Ceram. Soc. 84, 2045-2050, 2001.
12 Y. I. Lee, Y.-W. Kim, and M. Mitomo: Microstructure stability of fine-grained silicon carbide ceramics during annealing", J. Mater. Sci. 39, 3613-3617, 2004.   DOI
13 H. Gu, Y. Shinoda, and F. Wakai: Detection of Boron Segregation to Grain Boundaries in Silicon Carbide by Spatially Resolved Electron Energy-Loss Spectroscopy, J. Am. Ceram. Soc. 82, 469-472, 1999.
14 T. Nagano, H. Gu, Y. Shinoda, G. D. Zhan, M. Mitomo, and F. Wakai: Tensile ductility of liquid-phase sintered $\beta-silicon$ carbide at elevated temperature, Mater. Sci. Fourm, 304/306, 507-512, 1999.   DOI
15 T. Nagano, H. Gu, G. D. Zhan, and M. Mitomo: Effect of atmosphere on superplastic deformation behavior in nanocrystalline liquid-phase-sintered silicon carbide with $Al_2O_3-Y_2O_3$ additions, J. Mater. Sci., 37, 4419-4424, 2002.   DOI
16 R. J. Xie, M. Mitomo, W. Kim, Y.-W. Kim, G. D. Zhan, and Y. Akimune: Phase transformation and texture in hot-forged or annealed liquid-phase-sintered silicon carbide ceramics, J. Am. Ceram. Soc. 85, 459-465, 2002.
17 S. J. Lee, Y. I. Lee, Y.-W. Kim, R. J. Xie, M. Mitomo, and G. D. Zhan: Mechanical properties of hot-forged silicon carbide ceramics, Scripta Mater. 52, 153-156, 2005.   DOI
18 A. M. Kueck, K. K. Kim, Q. M. Ramasse, L. C. D. Jonghe, Nd R. O. Ritchie: Atomic-resolution imaging of the nanoscale origin of toughness in rare-earth doped SiC, Nano Lett. 8, 2935-2939, 2008.   DOI
19 D. A. Ray, S. Kaur, R. A. Cutler, and S. K. Shetty: Effects of additives on the pressure-assisted densification and properties of silicon carbide, J. Am. Ceram. Soc. 91, 2163-2169, 2008.   DOI
20 Y.-W. Kim, Y. S. Chun, T. Nishimura, M. Mitomo, and Y. H. Lee: High-temperature strength of silicon carbide ceramics sintered with rare-earth oxide and aluminum nitride, Acta Mater. 55, 727-736, 2007.   DOI
21 K. Y. Lim, D. H. Jang, Y.-W. Kim, J. Y. Park, and D. S. Park: Fabrication of dense 2D SiC fiber-SiC matrix composites by slurry infiltration and a stacking process, Met. Mater. -Int. 14, 589-591, 2008.   DOI
22 S. I. Ko, S. J. Lee, M. H. Roh, W. Kim, and Y.-W. Kim: Effect of annealing on mechanical properties of silicon carbide sintered with aluminum nitride and scandium oxide, Met. Mater. -Int. 15, 149-153, 2009.   DOI
23 M. Mitomo, Y.-W. Kim, and H. Hirotsuru: Fabrication of silicon carbide nanoceramics, J. Mater. Res. 11, 1601-1604, 1996.   DOI