• Title/Summary/Keyword: Silicon solar cells

Search Result 592, Processing Time 0.03 seconds

Study of Light-induced Degradation in Thin Film Silicon Solar Cells: Hydrogenated Amorphous Silicon Solar Cell and Nano-quantum Dot Silicon Thin Film Solar Cell (박막 실리콘 태양전지의 광열화현상 연구: 비정질 실리콘 태양전지 및 나노양자점 실리콘 박막 태양전지)

  • Kim, Ka-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • Light induced degradation is one of the major research challenges of hydrogenated amorphous silicon related thin film silicon solar cells. Amorphous silicon shows creation of metastable defect states, originating from elevated concentration of dangling bonds during light exposure. The metastable defect states work as recombination centers, and mostly affects quality of intrinsic layer in solar cells. In this paper we present results of light induced degradation in thin film silicon solar cells and discussion on physical origin, mechanism and practical solutions of light induced degradation in thin film silicon solar cells. In-situ light-soaking IV measurement techniques are presented. We also present thin film silicon material with silicon nano-quantum dots embedded within amorphous matrix, which shows superior stability during light-soaking. Our results suggest that solar cell using silicon nano-quantum dots in abosrber layer shows superior stability under light soaking, compared to the conventional amorphous silicon solar cell.

Silicon-Organic Hybrid Solar Cell Using Ag Nanowire/PEDOT:PSS Layer (은 나노와이어/PEDOT:PSS를 이용한 실리콘-유기물 하이브리드 태양전지)

  • Kyudong Kim;Sungjin Jo
    • Korean Journal of Materials Research
    • /
    • v.34 no.8
    • /
    • pp.395-399
    • /
    • 2024
  • Among various organic materials suitable for silicon-based inorganic-organic hybrid solar cells, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has been extensively studied due to its high optical transmittance, high work function, and low bandgap characteristics. The electro-optical properties of PEDOT:PSS have a significant impact on the power conversion efficiency of silicon-organic hybrid solar cells. To enhance the photovoltaic properties of the silicon-organic hybrid solar cells, we developed a method to improve the properties of the PEDOT:PSS film using Ag nanowires (NW) instead of conventional solvent addition methods. The influence of the Ag NW on the electro-optical property of the PEDOT:PSS film and the photovoltaic performance of the silicon-organic hybrid solar cells were investigated. The addition of Ag NW further improved the sheet resistance of the PEDOT:PSS film, enhancing the performance of the silicon-organic hybrid solar cells. The present work using the low sheet resistance PEDOT:PSS layer paves the way to develop simple yet more efficient silicon-organic hybrid solar cells.

Industry Applicable Future Texturing Process for Diamond wire sawed Multi-crystalline Silicon Solar Cells: A review

  • Ju, Minkyu;Lee, Youn-Jung;Balaji, Nagarajan;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Current major photovoltaic (PV) market share (> 60%) is being occupied by the multicrystalline (mc)-silicon solar cells despite of low efficiency compared to single crystalline silicon solar cells. The diamond wire sawing technology reduces the production cost of crystalline silicon solar cells, it increases the optical loss for the existing mc-silicon solar cells and hence its efficiency is low in the current mass production line. To overcome the optical loss in the mc-crystalline silicon, caused by the diamond wire sawing, next generation texturing process is being investigated by various research groups for the PV industry. In this review, the limitation of surface structure and optical loss due to the reflectivity of conventional mc-silicon solar cells are explained by the typical texturing mechanism. Various texturing technologies that could minimize the optical loss of mc-silicon solar cells are explained. Finally, next generation texturing technology to survive in the fierce cost competition of photovoltaic market is discussed.

Phophorus External Gettering for High Quality Wafer of Silicon Heterojunction Solar Cells

  • Park, Hyo-Min;Tak, Seong-Ju;Kim, Chan-Seok;Park, Seong-Eun;Kim, Yeong-Do;Kim, Dong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.43.2-43.2
    • /
    • 2011
  • Minority Carrier recombination should be suppressed for high efficiency solar cells. However, impurities in the silicon bulk region deteriorate the minority carrier lifetimes, causes conversion efficiency drop. In this study, we introduced phosphorus external gettering for silicon heterojunction solar cell substrates. Gettering was undergone at 750, 800, 850 and $900^{\circ}C$ in furnace for 30 minutes. Bulk lifetimes and calculated diffusion length were improved. We applied phosphorus gettering to silicon heterojunction solar cells. Gettered group and ungettered group were used as substrate of silicon heterojunction solar cells. After fabrication, characteristics of solar cells were analyzed. The results were observed to see the enhancement of substrate quality which directly connects with solar cell properties.

  • PDF

AZO Transparent Electrodes for Semi-Transparent Silicon Thin Film Solar Cells (AZO 투명 전극 기반 반투명 실리콘 박막 태양전지)

  • Nam, Jiyoon;Jo, Sungjin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.6
    • /
    • pp.401-405
    • /
    • 2017
  • Because silicon thin film solar cells have a high absorption coefficient in visible light, they can absorb 90% of the solar spectrum in a $1-{\mu}m$-thick layer. Silicon thin film solar cells also have high transparency and are lightweight. Therefore, they can be used for building integrated photovoltaic (BIPV) systems. However, the contact electrode needs to be replaced for fabricating silicon thin film solar cells in BIPV systems, because most of the silicon thin film solar cells use metal electrodes that have a high reflectivity and low transmittance. In this study, we replace the conventional aluminum top electrode with a transparent aluminum-doped zinc oxide (AZO) electrode, the band level of which matches well with that of the intrinsic layer of the silicon thin film solar cell and has high transmittance. We show that the AZO effectively replaces the top metal electrode and the bottom fluorine-doped tin oxide (FTO) substrate without a noticeable degradation of the photovoltaic characteristics.

The research of anti-reflection coating using porous silicon for crystalline silicon solar cells (다공성 실리콘을 이용한 결정질 실리콘 태양전지 반사방지막에 관한 연구)

  • Lee, Jaedoo;Kim, Minjeong;Lee, Soohong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.90.2-90.2
    • /
    • 2010
  • The crystalline silicon solar cells have been optical losses. but it can be reduced using light trapping by texture structure and anti-reflection coating. The high reflective index of crystalline silicon at solar wavelengths(400nm~1000nm) creates large reflection losses that must be compensated for by applying anti-reflection coating. In this study, the use of porous silicon(PSi) as an active material in a solar cell to take advantage of light trapping and blue-harvesting photoluminescence effect. Porous silicon is form by anodization and can be obtained in an electrolyte with hydrofluoric. We expect our research can results approaching to lower than 10% of several reflectance by porous silicon solar cells.

  • PDF

New Generation Multijunction Solar Cells for Achieving High Efficiencies

  • Lee, Sunhwa;Park, Jinjoo;Kim, Youngkuk;Kim, Sangho;Iftiquar, S.M.;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.2
    • /
    • pp.31-38
    • /
    • 2018
  • Multijunction solar cells present a practical solution towards a better photovoltaic conversion for a wider spectral range. In this review, we compare different types of multi-ijunction solar cell. First, we introduce thin film multijunction solar cell include to the thin film silicon, III-V material and chalcopyrite material. Until now the maximum reported power conversion efficiencies (PCE) of solar cells having different component sub-cells are 14.0% (thin film silicon), 46% (III-V material), 4.4% (chalcopyrite material) respectively. We then discuss the development of multijunction solar cell in which c-Si is used as bottom sub-cell while III-V material, thin film silicon, chalcopyrite material or perovskite material is used as top sub-cells.

Technology Trends and Prospects of Silicon Solar Cells (실리콘 태양전지의 기술현황 및 전망)

  • Park, Cheolmin;Cho, Jaehyun;Lee, Youngseok;Park, Jinjoo;Ju, Minkyu;Lee, Youn-Jung;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.11-16
    • /
    • 2013
  • The current solar cell industry is experiencing a temporary plateau due to a sluggish economy and oversupply. It is expected that the solar industry can see similar growth to that of the recent past by overcoming the current situation, as there is growing demand globally for solar energy. The current situation led to restructuring of the world's solar industry, and domestic firms will need to have competitiveness through strategic approaches and proprietary technology to survive in the global solar market. Crystalline and amorphous silicon based solar cells have led the solar industry and occupied half or more of the market thus far. They will do so in the future PV market as well by playing a pivotal role in the solar industry. In this paper, the current status and prospects of silicon based solar cells, from materials to comprehensive and high efficiency technology that can emerge in the future, are discussed.

Investigation of the Ni/Cu metallization for high-efficiency, low cost crystlline silicon solar cells (고효율, 저가화 실리콘태양전지를 위한 Ni/Cu/Ag 금속전극의 특성 연구)

  • Lee, Ji-Hun;Cho, Kyeng-Yeon;Lee, Soo-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.235-240
    • /
    • 2009
  • Crystlline silicon solar cells markets are increasing at rapid pace. now, crystlline silicon solar cells markets screen-printing solar cell is occupying. screen-printing solar cells manufacturing process are very quick, there is a strong point which is a low cost. but silicon and metal contact, uses Ag & Al pates. because of, high contact resistance, high series resistance and sintering inside process the electric conductivity decreases with 1/3. and In pastes ingredients uses Ag where $80{\sim}90%$ is metal of high cost. because of low cost solar cells descriptions is difficult. therefore BCSC(Buried Contact Solar Cell) is developed. and uses light-induced plating, ln-line galvanization developed equipments. Ni/Cu matel contact solar cells researches. in Germany Fraunhofer ISE. In order to manufacture high-efficiency solar cells, metal selections are important. metal materials get in metal resistance does small, to be electric conductivity does highly. efficiency must raise an increase with rise of the curve factor where the contact resistance of the silicon substrate and is caused by few with decrement of series resistance. Ni metal materials the price is cheap, Ti comes similar resistance. Cu and Ag has the electric conductivity which is similar. and Cu price is cheap. In this paper, Ni/Cu/Ag metal contact cell with screen printing manufactured, silicon metal contact comparison and analysis.

  • PDF

Potential Wide-gap Materials as a Top Cell for Multi-junction c-Si Based Solar Cells: A Short Review

  • Pham, Duy Phong;Lee, Sunhwa;Kim, Sehyeon;Oh, Donghyun;Khokhar, Muhammad Quddamah;Kim, Sangho;Park, Jinjoo;Kim, Youngkuk;Cho, Eun-Chel;Cho, Young-Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.76-84
    • /
    • 2019
  • Silicon heterojunction solar cells (SHJ) have dominated the photovoltaic market up till now but their conversion performance is practically limited to around 26% compared with the theoretical efficiency limit of 29.4%. A silicon based multi-junction devices are expected to overcome this limitation. In this report, we briefly review the state-of-art characteristic of wide-gap materials which has played a role as top sub-cells in silicon based multi-junction solar cells. In addition, we indicate significantly practical challenges and key issues of these multi-junction combination. Finally, we focus to some characteristics of III-V/c-Si tandem configuration which are reaching highly record performance in multi-junction silicon solar cells.