Browse > Article
http://dx.doi.org/10.21218/CPR.2018.6.2.031

New Generation Multijunction Solar Cells for Achieving High Efficiencies  

Lee, Sunhwa (School of Information and Communication Engineering, Sungkyunkwan University)
Park, Jinjoo (School of Information and Communication Engineering, Sungkyunkwan University)
Kim, Youngkuk (School of Information and Communication Engineering, Sungkyunkwan University)
Kim, Sangho (Department of Energy Science, Sungkyunkwan University)
Iftiquar, S.M. (School of Information and Communication Engineering, Sungkyunkwan University)
Yi, Junsin (School of Information and Communication Engineering, Sungkyunkwan University)
Publication Information
Current Photovoltaic Research / v.6, no.2, 2018 , pp. 31-38 More about this Journal
Abstract
Multijunction solar cells present a practical solution towards a better photovoltaic conversion for a wider spectral range. In this review, we compare different types of multi-ijunction solar cell. First, we introduce thin film multijunction solar cell include to the thin film silicon, III-V material and chalcopyrite material. Until now the maximum reported power conversion efficiencies (PCE) of solar cells having different component sub-cells are 14.0% (thin film silicon), 46% (III-V material), 4.4% (chalcopyrite material) respectively. We then discuss the development of multijunction solar cell in which c-Si is used as bottom sub-cell while III-V material, thin film silicon, chalcopyrite material or perovskite material is used as top sub-cells.
Keywords
Tandem solar cells; Multijunction solar cells; Thin film solar cell; c-Si solar cell;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. Park, S. M. Iftiquar, M. Shin, H. Kim, J. Jung, S. Kim, A. H. T. Le, Y. Kim, D. P. Pham, J. S. Jeong, J. Yi, Fabrication of honeycomb textured glass substrate and nanotexturing of zinc oxide front electrode for its application in high efficiency thin film amorphous silicon solar cell, J. Photonics Energy, 7 (2017), 025502, doi: http://dx.doi.org/10.1117/1.JPE.7.025502.   DOI
2 D. P. Pham, S. Kim, J. Park, A. H. Tuan Le, J. Cho, J. Jung, S. M. Iftiquar, J. Yi, Reduction in Photocurrent Loss and Improvement in Performance of Single Junction Solar Cell Due to Multistep Grading of Hydrogenated Amorphous Silicon Germanium Active Layer, Silicon, (2017) 1-9, doi: http://dx.doi.org/10.1007/s12633-016-9527-4.   DOI
3 S. M. Iftiquar, J. C. Lee, J. Lee, Y. Kim, J. Jang, Y. J. Lee, J. Yi, Light management and efficient carrier generation with a highly transparent window layer for a multijunction amorphous silicon solar cell, J. Photonics Energy, 3 (2013), 033098, doi: http://dx.doi.org/10.1117/1.JPE.3.033098.   DOI
4 H. Saidi, M. F. Boujmil, B. Durand, J. L. Lazzari, M. Bouaicha, Elaboration and characterization of $CuInSe_2$ thin films using one-step electrodeposition method on silicon substrate for photovoltaic application, Mater. Res. Express, 5 (2018), 016414, doi: http://dx.doi.org/10.1088/2053-1591/aaa604.   DOI
5 M. Saifullah, J. Gwak, J. H. Park, S. Ahn, K. Kim, Y. J. Eo, J. H. Yun, Effect of substrate temperature during the three-stage process on the $CuInSe_2$ solar cell characteristics, Curr. Appl. Phys., 17 (2017) 1194-1201, doi: http://dx.doi.org/10.1016/j.cap.2017.05.014.   DOI
6 L. L. Kazmerski, STABILITY AND TERNARY CHALCOPYRITE PHOTOVOLTAIC DEVICES, Natl Bur Stand Spec Publ, (1979) 30-40.
7 T. Nakada, S. Kijima, Y. Kuromiya, R. Arai, Y. Ishii, N. Kawamura, H. Ishizaki, N. Yamada, Chalcopyrite thin-film tandem solar cells with 1.5 V open-circuit-voltage, in: 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, WCPEC-4, Waikoloa, HI, 2007, pp. 400-403.
8 R. Kaigawa, K. Funahashi, R. Fujie, T. Wada, S. Merdes, R. Caballero, R. Klenk, Tandem solar cells with Cu(In,Ga)$S_2$ top cells on ZnO coated substrates, Solar Energy Materials and Solar Cells, 94 (2010) 1880-1883, doi: https://doi.org/10.1016/j.solmat.2010.06.029.   DOI
9 Z. Ren, H. Liu, Z. Liu, C. S. Tan, A. G. Aberle, T. Buonassisi, I. M. Peters, The GaAs/GaAs/Si solar cell - Towards current matching in an integrated two terminal tandem, Sol Energ Mater Sol Cells, 160 (2017) 94-100, doi: http://dx.doi.org/10.1016/j.solmat.2016.10.031.   DOI
10 T. P. White, N. N. Lal, K. R. Catchpole, Tandem solar cells based on high-efficiency c-Si bottom cells: Top cell requirements for >30% efficiency, IEEE J. Photovoltaics, 4 (2014) 208-214, 6626569, doi: http://dx.doi.org/10.1109/JPHOTOV.2013.2283342.   DOI
11 J. Cho, S. M. Iftiquar, M. Kim, J. Park, J. Jung, J. Kim, J. Yi, Hydrogenated amorphous silicon germanium active layer for top cell of a multi junction cell structure, J. Nanosci. Nanotechnol., 16 (2016) 4870-4874, doi: http://dx.doi.org/10.1166/jnn.2016.12208.   DOI
12 Y. Lee, V. A. Dao, S. M. Iftiquar, S. Kim, J. Yi, Current transport studies of amorphous n/p junctions and its application in a-Si:H/HIT-type tandem cells, Prog Photovoltaics Res Appl, 24 (2016) 52-58, doi: http://dx.doi.org/10.1002/pip.2644.   DOI
13 M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Solar cell efficiency tables (version 46), Prog Photovoltaics Res Appl, 23 (2015) 805-812, doi: http://dx.doi.org/10.1002/pip.2637 www.nrel.gov/news/press/2014/15436.html.   DOI
14 J. A. M. AbuShama, S. Johnston, T. Moriarty, G. Teeter, K. Ramanathan, R. Noufi, Properties of ZnO/CdS/$CuInSe_2$ solar cells with improved performance, Prog Photovoltaics Res Appl, 12 (2004) 39-45, doi: http://dx.doi.org/10.1002/pip.537.   DOI
15 S. Ishizuka, A. Yamada, P. J. Fons, H. Shibata, S. Niki, Impact of a binary $Ga_2Se_3$ precursor on ternary $CuGaSe_2$ thin-film and solar cell device properties, Appl Phys Lett, 103 (2013), 143903, doi: http://dx.doi.org/10.1063/1.4823585.   DOI
16 S. Ishizuka, A. Yamada, P. J. Fons, H. Shibata, S. Niki, Erratum: Impact of a binary $Ga_2Se_3$ precursor on ternary $CuGaSe_2$ thin-film and solar cell device properties (Applied Physics Letters (2013) 103 (143903)), Appl Phys Lett, 103 (2013), 269903, doi: http://dx.doi.org/10.1063/1.4858977.   DOI
17 N. P. Kim, R. M. Burgess, B. J. Stanbery, R. A. Mickelsen, J. E. Avery, R. W. McClelland, B. D. King, M. J. Boden, R. P. Gale, High efficiency GaAs/$CuInSe_2$ tandem junction solar cells, in: Anon (Ed.) Twentieth IEEE Photovoltaic Specialists Conference - 1988, Publ by IEEE, Piscataway, NJ, United States, Las Vegas, NV, USA, 1988, pp. 457-461.
18 J. Zhao, A. Wang, M. A. Green, F. Ferrazza, 19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells, Appl Phys Lett, 73 (1998) 1991-1993, doi: http://dx.doi.org/10.1063/1.122345.   DOI
19 A. Richter, J. Benick, F. Feldmann, A. Fell, M. Hermle, S. W. Glunz, n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation, Solar Energy Materials and Solar Cells, 173 (2017) 96-105, doi: http://dx.doi.org/https://doi.org/10.1016/j.solmat.2017.05.042.   DOI
20 T. Soga, K. Baskar, T. Kato, T. Jimbo, M. Umeno, MOCVD growth of high efficiency current-matched AlGaAsSi tandem solar cell, Journal of Crystal Growth, 174 (1997) 579-584, doi: http://dx.doi.org/https://doi.org/10.1016/S0022-0248(97)00064-X.   DOI
21 S. Essig, M. A. Steiner, C. Allebe, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, D. L. Young, Realization of GaInP/Si Dual-Junction Solar Cells with 29.8% 1-Sun Efficiency, IEEE J. Photovoltaics, 6 (2016) 1012-1019, 7460224, doi: http://dx.doi.org/10.1109/JPHOTOV.2016.2549746.   DOI
22 S. Essig, C. Allebe, T. Remo, J. F. Geisz, M. A. Steiner, K. Horowitz, L. Barraud, J. S. Ward, M. Schnabel, A. Descoeudres, D. L. Young, M. Woodhouse, M. Despeisse, C. Ballif, A. Tamboli, Raising the one-sun conversion efficiency of III-V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions, Nature Energy, 2 (2017), 17144, doi: http://dx.doi.org/10.1038/nenergy.2017.144.   DOI
23 R. Cariou, J. Benick, P. Beutel, N. Razek, C. Flotgen, M. Hermle, D. Lackner, S. W. Glunz, A. W. Bett, M. Wimplinger, F. Dimroth, Monolithic Two-Terminal III-V//Si Triple-Junction Solar Cells with 30.2% Efficiency under 1-Sun AM1.5g, IEEE J. Photovoltaics, 7 (2017) 367-373, doi: http://dx.doi.org/10.1109/JPHOTOV.2016.2629840.   DOI
24 F. Roca, A. Bosio, A. Romeo, Introduction to inorganic thin film solar cells, in: Thin Film Solar Cells: Current Status and Future Trends, Nova Science Publishers, Inc., 2012, pp. 26-57, 9781621005148 (ISBN).
25 K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nature Energy, 2 (2017) 17032, doi: http://dx.doi.org/10.1038/nenergy.2017.32.   DOI
26 A. Marti, G. L. Araujo, Limiting efficiencies for photovoltaic energy conversion in multigap systems, Solar Energy Materials and Solar Cells, 43 (1996) 203-222, doi: http://dx.doi.org/ https://doi.org/10.1016/0927-0248(96)00015-3.   DOI
27 T. Matsui, H. Sai, T. Suezaki, M. Matsumoto, K. Saito, I. Yoshida, M. Kondo, Development of highly stable and efficient amorphous silicon based solar cells, in: 28th European Photovoltaic Solar Energy Conference and Exhibition, EUPVSEC Proc., 2013, pp. 2213-2217, http://www.eupvsec-proceedings.com/proceedings?paper=23751.
28 M. Boccard, M. Despeisse, J. Escarre, X. Niquille, G. Bugnon, S. Hanni, M. Bonnet-Eymard, F. Meillaud, C. Ballif, High-stable-efficiency tandem thin-film silicon solar cell with low-refractive-index silicon-oxide interlayer, IEEE J. Photovoltaics, 4 (2014) 1368-1373, doi: http://dx.doi.org/10.1109/JPHOTOV.2014.2357495.   DOI
29 A. Banerjee, T. Su, D. Beglau, G. Pietka, F. S. Liu, S. Almutawalli, J. Yang, S. Guha, High-efficiency, multijunction nc-Si:H-based solar cells at high deposition rate, IEEE J. Photovoltaics, 2 (2012) 99-103, doi: http://dx.doi.org/10.1109/JPHOTOV.2011.2180892.   DOI
30 Y. Hamakawa, K. Fujimoto, K. Okuda, Y. Kashima, S. Nonomura, H. Okamoto, New types of high efficiency solar cells based on a-Si, Applied Physics Letters, 43 (1983) 644-646, doi: http://dx.doi.org/10.1063/1.94462.   DOI
31 S. Essig, J. Benick, M. Schachtner, A. Wekkeli, M. Hermle, F. Dimroth, Wafer-Bonded GaInP/GaAs//Si Solar Cells With 30% Efficiency Under Concentrated Sunlight, IEEE J. Photovoltaics, 5 (2015) 977-981, doi: http://dx.doi.org/10.1109/JPHOTOV.2015.2400212.   DOI
32 J. Park, Phd.,Multi-junction thin film silicon solar cells for a low cost and high efficiency performance approach,College of Information and Communications Engineering, Sungkyunkwan University, PhD., 2014.
33 G. Li, H. Li, J. Y. L. Ho, M. Wong, H. S. Kwok, Nanopyramid structure for ultrathin c-Si tandem solar cells, Nano Lett., 14 (2014) 2563-2568, doi: http://dx.doi.org/10.1021/nl500366c.   DOI
34 H. Uzu, M. Ichikawa, M. Hino, K. Nakano, T. Meguro, J. L. Hernández, H. S. Kim, N. G. Park, K. Yamamoto, High efficiency solar cells combining a perovskite and a silicon heterojunction solar cells via an optical splitting system, Appl Phys Lett, 106 (2015), 013506, doi: http://dx.doi.org/10.1063/1.4905177.   DOI
35 A. R. Jeong, S. B. Choi, W. M. Kim, J. K. Park, J. Choi, I. Kim, J. H. Jeong, Electrical analysis of c-Si/CGSe monolithic tandem solar cells by using a cell-selective light absorption scheme, Sci. Rep., 7 (2017), 15723, doi: http://dx.doi.org/10.1038/s41598-017-15998-y.   DOI
36 A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131 (2009) 6050-6051, doi: http://dx.doi.org/10.1021/ja809598r.   DOI
37 F. Zhang, J. Song, R. Hu, Y. Xiang, J. He, Y. Hao, J. Lian, B. Zhang, P. Zeng, J. Qu, Interfacial Passivation of the p-Doped Hole-Transporting Layer Using General Insulating Polymers for High-Performance Inverted Perovskite Solar Cells, Small, (2018), doi: http://dx.doi.org/10.1002/smll.201704007.   DOI
38 J. Cho, S. M. Iftiquar, D. P. Pham, J. Jung, J. Park, S. Ahn, A. H. T. Le, J. S. Kim, J. Yi, Improvement in performance of tandem solar cell by applying buffer layer, back reflector and higher crystallinity of the microcrystalline Si active layer of bottom subcell, Thin Solid Films, 639 (2017) 56-63, doi: http://dx.doi.org/10.1016/j.tsf.2017.08.016.   DOI
39 C. Y. Tsai, C. Y. Tsai, Development of amorphous/microcrystalline silicon tandem thin-film solar modules with low output voltage, high energy yield, low light-induced degradation, and high damp-heat reliability, J. Nanomater., 2014 (2014), 861741, doi: http://dx.doi.org/10.1155/2014/861741.   DOI
40 T. Matsui, K. Maejima, A. Bidiville, H. Sai, T. Koida, T. Suezaki, M. Matsumoto, K. Saito, I. Yoshida, M. Kondo, High-efficiency thin-film silicon solar cells realized by integrating stable a-Si:H absorbers into improved device design, Jpn. J. Appl. Phys., 54 (2015), 08kb10, doi: http://dx.doi.org/10.7567/JJAP.54.08KB10.   DOI
41 S. Kim, J. W. Chung, H. Lee, J. Park, Y. Heo, H. M. Lee, Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology, Solar Energy Materials and Solar Cells, 119 (2013) 26-35, doi: http://dx.doi.org/10.1016/j.solmat.2013.04.016.   DOI
42 H. Sai, T. Matsui, T. Koida, K. Matsubara, M. Kondo, S. Sugiyama, H. Katayama, Y. Takeuchi, I. Yoshida, Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6%, Appl Phys Lett, 106 (2015), 213902, doi: http://dx.doi.org/10.1063/1.4921794.   DOI
43 H. Sai, T. Matsui, K. Matsubara, Stabilized 14.0%-efficient triple-junction thin-film silicon solar cell, Appl Phys Lett, 109 (2016), 183506, doi: http://dx.doi.org/10.1063/1.4966996.   DOI
44 W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348 (2015) 1234-1237, doi: http://dx.doi.org/10.1126/science.aaa9272.   DOI
45 J. P. Mailoa, C. D. Bailie, E. C. Johlin, E. T. Hoke, A. J. Akey, W. H. Nguyen, M. D. McGehee, T. Buonassisi, A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction, Appl Phys Lett, 106 (2015), 121105, doi: http://dx.doi.org/10.1063/1.4914179.   DOI
46 J. Werner, C. H. Weng, A. Walter, L. Fesquet, J. P. Seif, S. De Wolf, B. Niesen, C. Ballif, Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm2, J. Phys. Chem. Lett., 7 (2016) 161-166, doi: http://dx.doi.org/10.1021/acs.jpclett.5b02686.   DOI
47 T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu, D. Jacobs, E. C. Wang, T. C. Kho, K. C. Fong, M. Stocks, E. Franklin, A. Blakers, N. Zin, K. McIntosh, W. Li, Y. B. Cheng, T. P. White, K. Weber, K. Catchpole, Rubidium Multication Perovskite with Optimized Bandgap for Perovskite-Silicon Tandem with over 26% Efficiency, Adv. Energy Mater., 7 (2017), doi: http://dx.doi.org/10.1002/aenm.201700228.   DOI
48 K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, M. D. McGehee, 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability, Nature Energy, 2 (2017), 17009, doi: http://dx.doi.org/10.1038/nenergy.2017.9.   DOI
49 B. Wang, X. Xiao, T. Chen, Perovskite photovoltaics: A high-efficiency newcomer to the solar cell family, Nanoscale, 6 (2014) 12287-12297, doi: http://dx.doi.org/10.1039/c4nr04144e.   DOI
50 C. H. Hsu, Y. S. Lin, Y. S. Cho, S. Y. Lien, P. Han, D. S. Wuu, Highly stable micromorph tandem solar cells fabricated by ECRCVD With separate silane gas inlets system, IEEE J. Quantum Electron., 50 (2014) 515-521, doi: http://dx.doi.org/10.1109/JQE.2014.2324816.   DOI
51 C. I. Wu, S. P. Chang, S. J. Chang, Method for improving the stability of Gen 5 silicon thin-film tandem solar cell, IEEE J. Photovoltaics, 3 (2013) 1140-1143, doi: http://dx.doi.org/10.1109/JPHOTOV.2013.2270342.   DOI
52 M. Boccard, M. Despeisse, J. Escarre, X. Niquille, G. Bugnon, S. Hanni, M. Bonnet-Eymard, F. Meillaud, C. Ballif, High-Stable-Efficiency Tandem Thin-Film Silicon Solar Cell With Low-Refractive-Index Silicon-Oxide Interlayer, IEEE J. Photovoltaics, 4(6) (2014), 1368-1373, doi: http://dx.doi.org/10.1109/JPHOTOV.2014.2357495.   DOI
53 P. Loper, S. J. Moon, S. Martin De Nicolas, B. Niesen, M. Ledinsky, S. Nicolay, J. Bailat, J. H. Yum, S. De Wolf, C. Ballif, Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells, Phys. Chem. Chem. Phys., 17 (2015) 1619-1629, doi: http://dx.doi.org/10.1039/c4cp03788j.   DOI
54 J. Werner, L. Barraud, A. Walter, M. Brauninger, F. Sahli, D. Sacchetto, N. Tetreault, B. Paviet-Salomon, S. J. Moon, C. Allebe, M. Despeisse, S. Nicolay, S. De Wolf, B. Niesen, C. Ballif, Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells, ACS Energy Lett., 1 (2016) 474-480, doi: http://dx.doi.org/10.1021/acsenergylett.6b00254.   DOI
55 L. Mazzarella, A. B. Morales-Vilches, L. Korte, R. Schlatmann, B. Stannowski, Ultra-thin nanocrystalline n-type silicon oxide front contact layers for rear-emitter silicon heterojunction solar cells, Sol Energ Mater Sol Cells, 179 (2018) 386-391, doi: http://dx.doi.org/10.1016/j.solmat.2018.01.034.   DOI