DOI QR코드

DOI QR Code

New Generation Multijunction Solar Cells for Achieving High Efficiencies

  • Lee, Sunhwa (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Park, Jinjoo (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim, Youngkuk (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim, Sangho (Department of Energy Science, Sungkyunkwan University) ;
  • Iftiquar, S.M. (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (School of Information and Communication Engineering, Sungkyunkwan University)
  • Received : 2018.05.25
  • Accepted : 2018.06.07
  • Published : 2018.06.30

Abstract

Multijunction solar cells present a practical solution towards a better photovoltaic conversion for a wider spectral range. In this review, we compare different types of multi-ijunction solar cell. First, we introduce thin film multijunction solar cell include to the thin film silicon, III-V material and chalcopyrite material. Until now the maximum reported power conversion efficiencies (PCE) of solar cells having different component sub-cells are 14.0% (thin film silicon), 46% (III-V material), 4.4% (chalcopyrite material) respectively. We then discuss the development of multijunction solar cell in which c-Si is used as bottom sub-cell while III-V material, thin film silicon, chalcopyrite material or perovskite material is used as top sub-cells.

Keywords

References

  1. L. Mazzarella, A. B. Morales-Vilches, L. Korte, R. Schlatmann, B. Stannowski, Ultra-thin nanocrystalline n-type silicon oxide front contact layers for rear-emitter silicon heterojunction solar cells, Sol Energ Mater Sol Cells, 179 (2018) 386-391, doi: http://dx.doi.org/10.1016/j.solmat.2018.01.034.
  2. F. Roca, A. Bosio, A. Romeo, Introduction to inorganic thin film solar cells, in: Thin Film Solar Cells: Current Status and Future Trends, Nova Science Publishers, Inc., 2012, pp. 26-57, 9781621005148 (ISBN).
  3. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nature Energy, 2 (2017) 17032, doi: http://dx.doi.org/10.1038/nenergy.2017.32.
  4. A. Marti, G. L. Araujo, Limiting efficiencies for photovoltaic energy conversion in multigap systems, Solar Energy Materials and Solar Cells, 43 (1996) 203-222, doi: http://dx.doi.org/ https://doi.org/10.1016/0927-0248(96)00015-3.
  5. T. Matsui, H. Sai, T. Suezaki, M. Matsumoto, K. Saito, I. Yoshida, M. Kondo, Development of highly stable and efficient amorphous silicon based solar cells, in: 28th European Photovoltaic Solar Energy Conference and Exhibition, EUPVSEC Proc., 2013, pp. 2213-2217, http://www.eupvsec-proceedings.com/proceedings?paper=23751.
  6. M. Boccard, M. Despeisse, J. Escarre, X. Niquille, G. Bugnon, S. Hanni, M. Bonnet-Eymard, F. Meillaud, C. Ballif, High-stable-efficiency tandem thin-film silicon solar cell with low-refractive-index silicon-oxide interlayer, IEEE J. Photovoltaics, 4 (2014) 1368-1373, doi: http://dx.doi.org/10.1109/JPHOTOV.2014.2357495.
  7. A. Banerjee, T. Su, D. Beglau, G. Pietka, F. S. Liu, S. Almutawalli, J. Yang, S. Guha, High-efficiency, multijunction nc-Si:H-based solar cells at high deposition rate, IEEE J. Photovoltaics, 2 (2012) 99-103, doi: http://dx.doi.org/10.1109/JPHOTOV.2011.2180892.
  8. Y. Hamakawa, K. Fujimoto, K. Okuda, Y. Kashima, S. Nonomura, H. Okamoto, New types of high efficiency solar cells based on a-Si, Applied Physics Letters, 43 (1983) 644-646, doi: http://dx.doi.org/10.1063/1.94462.
  9. J. Cho, S. M. Iftiquar, D. P. Pham, J. Jung, J. Park, S. Ahn, A. H. T. Le, J. S. Kim, J. Yi, Improvement in performance of tandem solar cell by applying buffer layer, back reflector and higher crystallinity of the microcrystalline Si active layer of bottom subcell, Thin Solid Films, 639 (2017) 56-63, doi: http://dx.doi.org/10.1016/j.tsf.2017.08.016.
  10. C. Y. Tsai, C. Y. Tsai, Development of amorphous/microcrystalline silicon tandem thin-film solar modules with low output voltage, high energy yield, low light-induced degradation, and high damp-heat reliability, J. Nanomater., 2014 (2014), 861741, doi: http://dx.doi.org/10.1155/2014/861741.
  11. T. Matsui, K. Maejima, A. Bidiville, H. Sai, T. Koida, T. Suezaki, M. Matsumoto, K. Saito, I. Yoshida, M. Kondo, High-efficiency thin-film silicon solar cells realized by integrating stable a-Si:H absorbers into improved device design, Jpn. J. Appl. Phys., 54 (2015), 08kb10, doi: http://dx.doi.org/10.7567/JJAP.54.08KB10.
  12. S. Kim, J. W. Chung, H. Lee, J. Park, Y. Heo, H. M. Lee, Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology, Solar Energy Materials and Solar Cells, 119 (2013) 26-35, doi: http://dx.doi.org/10.1016/j.solmat.2013.04.016.
  13. H. Sai, T. Matsui, T. Koida, K. Matsubara, M. Kondo, S. Sugiyama, H. Katayama, Y. Takeuchi, I. Yoshida, Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6%, Appl Phys Lett, 106 (2015), 213902, doi: http://dx.doi.org/10.1063/1.4921794.
  14. H. Sai, T. Matsui, K. Matsubara, Stabilized 14.0%-efficient triple-junction thin-film silicon solar cell, Appl Phys Lett, 109 (2016), 183506, doi: http://dx.doi.org/10.1063/1.4966996.
  15. C. H. Hsu, Y. S. Lin, Y. S. Cho, S. Y. Lien, P. Han, D. S. Wuu, Highly stable micromorph tandem solar cells fabricated by ECRCVD With separate silane gas inlets system, IEEE J. Quantum Electron., 50 (2014) 515-521, doi: http://dx.doi.org/10.1109/JQE.2014.2324816.
  16. C. I. Wu, S. P. Chang, S. J. Chang, Method for improving the stability of Gen 5 silicon thin-film tandem solar cell, IEEE J. Photovoltaics, 3 (2013) 1140-1143, doi: http://dx.doi.org/10.1109/JPHOTOV.2013.2270342.
  17. M. Boccard, M. Despeisse, J. Escarre, X. Niquille, G. Bugnon, S. Hanni, M. Bonnet-Eymard, F. Meillaud, C. Ballif, High-Stable-Efficiency Tandem Thin-Film Silicon Solar Cell With Low-Refractive-Index Silicon-Oxide Interlayer, IEEE J. Photovoltaics, 4(6) (2014), 1368-1373, doi: http://dx.doi.org/10.1109/JPHOTOV.2014.2357495.
  18. H. Park, S. M. Iftiquar, M. Shin, H. Kim, J. Jung, S. Kim, A. H. T. Le, Y. Kim, D. P. Pham, J. S. Jeong, J. Yi, Fabrication of honeycomb textured glass substrate and nanotexturing of zinc oxide front electrode for its application in high efficiency thin film amorphous silicon solar cell, J. Photonics Energy, 7 (2017), 025502, doi: http://dx.doi.org/10.1117/1.JPE.7.025502.
  19. D. P. Pham, S. Kim, J. Park, A. H. Tuan Le, J. Cho, J. Jung, S. M. Iftiquar, J. Yi, Reduction in Photocurrent Loss and Improvement in Performance of Single Junction Solar Cell Due to Multistep Grading of Hydrogenated Amorphous Silicon Germanium Active Layer, Silicon, (2017) 1-9, doi: http://dx.doi.org/10.1007/s12633-016-9527-4.
  20. S. M. Iftiquar, J. C. Lee, J. Lee, Y. Kim, J. Jang, Y. J. Lee, J. Yi, Light management and efficient carrier generation with a highly transparent window layer for a multijunction amorphous silicon solar cell, J. Photonics Energy, 3 (2013), 033098, doi: http://dx.doi.org/10.1117/1.JPE.3.033098.
  21. J. Cho, S. M. Iftiquar, M. Kim, J. Park, J. Jung, J. Kim, J. Yi, Hydrogenated amorphous silicon germanium active layer for top cell of a multi junction cell structure, J. Nanosci. Nanotechnol., 16 (2016) 4870-4874, doi: http://dx.doi.org/10.1166/jnn.2016.12208.
  22. Y. Lee, V. A. Dao, S. M. Iftiquar, S. Kim, J. Yi, Current transport studies of amorphous n/p junctions and its application in a-Si:H/HIT-type tandem cells, Prog Photovoltaics Res Appl, 24 (2016) 52-58, doi: http://dx.doi.org/10.1002/pip.2644.
  23. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Solar cell efficiency tables (version 46), Prog Photovoltaics Res Appl, 23 (2015) 805-812, doi: http://dx.doi.org/10.1002/pip.2637 www.nrel.gov/news/press/2014/15436.html.
  24. J. A. M. AbuShama, S. Johnston, T. Moriarty, G. Teeter, K. Ramanathan, R. Noufi, Properties of ZnO/CdS/$CuInSe_2$ solar cells with improved performance, Prog Photovoltaics Res Appl, 12 (2004) 39-45, doi: http://dx.doi.org/10.1002/pip.537.
  25. S. Ishizuka, A. Yamada, P. J. Fons, H. Shibata, S. Niki, Impact of a binary $Ga_2Se_3$ precursor on ternary $CuGaSe_2$ thin-film and solar cell device properties, Appl Phys Lett, 103 (2013), 143903, doi: http://dx.doi.org/10.1063/1.4823585.
  26. S. Ishizuka, A. Yamada, P. J. Fons, H. Shibata, S. Niki, Erratum: Impact of a binary $Ga_2Se_3$ precursor on ternary $CuGaSe_2$ thin-film and solar cell device properties (Applied Physics Letters (2013) 103 (143903)), Appl Phys Lett, 103 (2013), 269903, doi: http://dx.doi.org/10.1063/1.4858977.
  27. N. P. Kim, R. M. Burgess, B. J. Stanbery, R. A. Mickelsen, J. E. Avery, R. W. McClelland, B. D. King, M. J. Boden, R. P. Gale, High efficiency GaAs/$CuInSe_2$ tandem junction solar cells, in: Anon (Ed.) Twentieth IEEE Photovoltaic Specialists Conference - 1988, Publ by IEEE, Piscataway, NJ, United States, Las Vegas, NV, USA, 1988, pp. 457-461.
  28. H. Saidi, M. F. Boujmil, B. Durand, J. L. Lazzari, M. Bouaicha, Elaboration and characterization of $CuInSe_2$ thin films using one-step electrodeposition method on silicon substrate for photovoltaic application, Mater. Res. Express, 5 (2018), 016414, doi: http://dx.doi.org/10.1088/2053-1591/aaa604.
  29. M. Saifullah, J. Gwak, J. H. Park, S. Ahn, K. Kim, Y. J. Eo, J. H. Yun, Effect of substrate temperature during the three-stage process on the $CuInSe_2$ solar cell characteristics, Curr. Appl. Phys., 17 (2017) 1194-1201, doi: http://dx.doi.org/10.1016/j.cap.2017.05.014.
  30. L. L. Kazmerski, STABILITY AND TERNARY CHALCOPYRITE PHOTOVOLTAIC DEVICES, Natl Bur Stand Spec Publ, (1979) 30-40.
  31. T. Nakada, S. Kijima, Y. Kuromiya, R. Arai, Y. Ishii, N. Kawamura, H. Ishizaki, N. Yamada, Chalcopyrite thin-film tandem solar cells with 1.5 V open-circuit-voltage, in: 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, WCPEC-4, Waikoloa, HI, 2007, pp. 400-403.
  32. R. Kaigawa, K. Funahashi, R. Fujie, T. Wada, S. Merdes, R. Caballero, R. Klenk, Tandem solar cells with Cu(In,Ga)$S_2$ top cells on ZnO coated substrates, Solar Energy Materials and Solar Cells, 94 (2010) 1880-1883, doi: https://doi.org/10.1016/j.solmat.2010.06.029.
  33. Z. Ren, H. Liu, Z. Liu, C. S. Tan, A. G. Aberle, T. Buonassisi, I. M. Peters, The GaAs/GaAs/Si solar cell - Towards current matching in an integrated two terminal tandem, Sol Energ Mater Sol Cells, 160 (2017) 94-100, doi: http://dx.doi.org/10.1016/j.solmat.2016.10.031.
  34. T. P. White, N. N. Lal, K. R. Catchpole, Tandem solar cells based on high-efficiency c-Si bottom cells: Top cell requirements for >30% efficiency, IEEE J. Photovoltaics, 4 (2014) 208-214, 6626569, doi: http://dx.doi.org/10.1109/JPHOTOV.2013.2283342.
  35. J. Zhao, A. Wang, M. A. Green, F. Ferrazza, 19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells, Appl Phys Lett, 73 (1998) 1991-1993, doi: http://dx.doi.org/10.1063/1.122345.
  36. A. Richter, J. Benick, F. Feldmann, A. Fell, M. Hermle, S. W. Glunz, n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation, Solar Energy Materials and Solar Cells, 173 (2017) 96-105, doi: http://dx.doi.org/https://doi.org/10.1016/j.solmat.2017.05.042.
  37. T. Soga, K. Baskar, T. Kato, T. Jimbo, M. Umeno, MOCVD growth of high efficiency current-matched AlGaAsSi tandem solar cell, Journal of Crystal Growth, 174 (1997) 579-584, doi: http://dx.doi.org/https://doi.org/10.1016/S0022-0248(97)00064-X.
  38. S. Essig, M. A. Steiner, C. Allebe, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, D. L. Young, Realization of GaInP/Si Dual-Junction Solar Cells with 29.8% 1-Sun Efficiency, IEEE J. Photovoltaics, 6 (2016) 1012-1019, 7460224, doi: http://dx.doi.org/10.1109/JPHOTOV.2016.2549746.
  39. S. Essig, C. Allebe, T. Remo, J. F. Geisz, M. A. Steiner, K. Horowitz, L. Barraud, J. S. Ward, M. Schnabel, A. Descoeudres, D. L. Young, M. Woodhouse, M. Despeisse, C. Ballif, A. Tamboli, Raising the one-sun conversion efficiency of III-V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions, Nature Energy, 2 (2017), 17144, doi: http://dx.doi.org/10.1038/nenergy.2017.144.
  40. R. Cariou, J. Benick, P. Beutel, N. Razek, C. Flotgen, M. Hermle, D. Lackner, S. W. Glunz, A. W. Bett, M. Wimplinger, F. Dimroth, Monolithic Two-Terminal III-V//Si Triple-Junction Solar Cells with 30.2% Efficiency under 1-Sun AM1.5g, IEEE J. Photovoltaics, 7 (2017) 367-373, doi: http://dx.doi.org/10.1109/JPHOTOV.2016.2629840.
  41. S. Essig, J. Benick, M. Schachtner, A. Wekkeli, M. Hermle, F. Dimroth, Wafer-Bonded GaInP/GaAs//Si Solar Cells With 30% Efficiency Under Concentrated Sunlight, IEEE J. Photovoltaics, 5 (2015) 977-981, doi: http://dx.doi.org/10.1109/JPHOTOV.2015.2400212.
  42. J. Park, Phd.,Multi-junction thin film silicon solar cells for a low cost and high efficiency performance approach,College of Information and Communications Engineering, Sungkyunkwan University, PhD., 2014.
  43. G. Li, H. Li, J. Y. L. Ho, M. Wong, H. S. Kwok, Nanopyramid structure for ultrathin c-Si tandem solar cells, Nano Lett., 14 (2014) 2563-2568, doi: http://dx.doi.org/10.1021/nl500366c.
  44. H. Uzu, M. Ichikawa, M. Hino, K. Nakano, T. Meguro, J. L. Hernández, H. S. Kim, N. G. Park, K. Yamamoto, High efficiency solar cells combining a perovskite and a silicon heterojunction solar cells via an optical splitting system, Appl Phys Lett, 106 (2015), 013506, doi: http://dx.doi.org/10.1063/1.4905177.
  45. A. R. Jeong, S. B. Choi, W. M. Kim, J. K. Park, J. Choi, I. Kim, J. H. Jeong, Electrical analysis of c-Si/CGSe monolithic tandem solar cells by using a cell-selective light absorption scheme, Sci. Rep., 7 (2017), 15723, doi: http://dx.doi.org/10.1038/s41598-017-15998-y.
  46. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131 (2009) 6050-6051, doi: http://dx.doi.org/10.1021/ja809598r.
  47. F. Zhang, J. Song, R. Hu, Y. Xiang, J. He, Y. Hao, J. Lian, B. Zhang, P. Zeng, J. Qu, Interfacial Passivation of the p-Doped Hole-Transporting Layer Using General Insulating Polymers for High-Performance Inverted Perovskite Solar Cells, Small, (2018), doi: http://dx.doi.org/10.1002/smll.201704007.
  48. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348 (2015) 1234-1237, doi: http://dx.doi.org/10.1126/science.aaa9272.
  49. J. P. Mailoa, C. D. Bailie, E. C. Johlin, E. T. Hoke, A. J. Akey, W. H. Nguyen, M. D. McGehee, T. Buonassisi, A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction, Appl Phys Lett, 106 (2015), 121105, doi: http://dx.doi.org/10.1063/1.4914179.
  50. J. Werner, C. H. Weng, A. Walter, L. Fesquet, J. P. Seif, S. De Wolf, B. Niesen, C. Ballif, Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm2, J. Phys. Chem. Lett., 7 (2016) 161-166, doi: http://dx.doi.org/10.1021/acs.jpclett.5b02686.
  51. T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu, D. Jacobs, E. C. Wang, T. C. Kho, K. C. Fong, M. Stocks, E. Franklin, A. Blakers, N. Zin, K. McIntosh, W. Li, Y. B. Cheng, T. P. White, K. Weber, K. Catchpole, Rubidium Multication Perovskite with Optimized Bandgap for Perovskite-Silicon Tandem with over 26% Efficiency, Adv. Energy Mater., 7 (2017), doi: http://dx.doi.org/10.1002/aenm.201700228.
  52. K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Z. Hoye, C. D. Bailie, T. Leijtens, I. M. Peters, M. C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H. J. Snaith, T. Buonassisi, Z. C. Holman, S. F. Bent, M. D. McGehee, 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability, Nature Energy, 2 (2017), 17009, doi: http://dx.doi.org/10.1038/nenergy.2017.9.
  53. B. Wang, X. Xiao, T. Chen, Perovskite photovoltaics: A high-efficiency newcomer to the solar cell family, Nanoscale, 6 (2014) 12287-12297, doi: http://dx.doi.org/10.1039/c4nr04144e.
  54. P. Loper, S. J. Moon, S. Martin De Nicolas, B. Niesen, M. Ledinsky, S. Nicolay, J. Bailat, J. H. Yum, S. De Wolf, C. Ballif, Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells, Phys. Chem. Chem. Phys., 17 (2015) 1619-1629, doi: http://dx.doi.org/10.1039/c4cp03788j.
  55. J. Werner, L. Barraud, A. Walter, M. Brauninger, F. Sahli, D. Sacchetto, N. Tetreault, B. Paviet-Salomon, S. J. Moon, C. Allebe, M. Despeisse, S. Nicolay, S. De Wolf, B. Niesen, C. Ballif, Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells, ACS Energy Lett., 1 (2016) 474-480, doi: http://dx.doi.org/10.1021/acsenergylett.6b00254.