• Title/Summary/Keyword: Silicon oxide substrate

Search Result 238, Processing Time 0.033 seconds

New Fabrication method of Planar Micro Gas Sesnor Array (집적도를 높인 평면형 가스감지소자 어레이 제작기술)

  • 정완영
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.727-730
    • /
    • 2003
  • Thin tin oxide film with nano-size particle was prepared on silicon substrate by hydrothermal synthetic method and successive sol-gel spin coating method. The fabrication method of tin oxide film with ultrafine nano-size crystalline structure was tried to be applied to fabrication of micro gas sensor array on silicon substrate. The tin oxide film on silicon substrate was well patterned by chemical etching upto 5${\mu}{\textrm}{m}$width and showed very uniform flatness. The tin oxide film preparation method and patterning method were successfully applied to newly proposed 2-dimensional micro sensor fabrication.

  • PDF

ANALYSIS OF THE ANODIC OXIDATION OF SINGLE CRYSTALLINE SILICON IN ETHYLEN GLYCOL SOLUTION

  • Yuga, Masamitsu;Takeuchi, Manabu
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.235-238
    • /
    • 1999
  • Silicon dioxide films were prepared by anodizing silicon wafers in an ethylene $glycol+HNO_3(0.04{\;}N)$ at 20 to $70^{\circ}C$. The voltage between silicon anode and platinum cathode was measured during this process. Under the constant current electrolysis, the voltage increased with oxide film growth. The transition time at which the voltage reached the predetermined value depended on the temperature of the electrolyte. After the time of electrolysis reached the transition time, the anodization was changed the constant voltage mode. The depth profile of oxide film/Si substrate was confirmed by XPS analysis to study the influence of the electrolyte temperature on the anodization. Usually, the oxide-silicon peaks disappear in the silicon substrate, however, this peak was not small at $45^{\circ}C$ in this region.

  • PDF

Patterning of Diamond Micro-Columns

  • Cho, Hun-Suk;Baik, Young-Joon;Chung, Bo-Keon;Lee, Ju-Yong;Jeon, D.;So, Dae-Hwa
    • The Korean Journal of Ceramics
    • /
    • v.3 no.1
    • /
    • pp.34-36
    • /
    • 1997
  • We have fabricated a patterned diamond field emitter on a silicon substrate. Fine diamond particles were planted on a silicon wafer using conventional scratch method. A silicon oxide film was deposited on the substrate seeded with diamond powder. An array of holes was patterned on the silicon oxide film using VLSI processing technology. Diamond grains were grown using a microwave plasma-assisted chemical vapor deposition. Because diamond could not grow on the silicon oxide barrier, diamond grains filled only the patterned holes in the silicon oxide film, resulting in an array of diamond tips.

  • PDF

Etch Rate of Oxide Grown on Silicon Implanted with Different Ion Implantation Conditions prior to Oxidation

  • Joung, Yang-Hee;Kang, Seong-Jun
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.2
    • /
    • pp.67-69
    • /
    • 2003
  • The experimental studies for the etch properties of the oxide grown on silicon substrate, which is in diluted hydrogen fluoride (HF) solution, are presented. Using different ion implantation dosages, dopants and energies, silicon substrate was implanted. The wet etching in diluted HF solution is used as a mean of wafer cleaning at various steps of VLSI processing. It is shown that the wet etch rate of oxide grown on various implanted silicon substrates is a strong function of ion implantation dopants, dosages and energies. This phenomenon has never been reported before. This paper shows that the difference of wet etch rate of oxide by ion implantation conditions is attributed to the kinds and volumes of dopants which was diffused out into $SiO_2$ from implanted silicon during thermal oxidation.

Modeling and Analysis of Silicon Substrate Coupling for CMOS RE-IC Design (CMOS RE-IC 설계를 위한 실리콘 기판 커플링 모델 및 해석)

  • 신성규;어영선
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.393-396
    • /
    • 1999
  • A circuit model of silicon substrate coupling for CMOS RF-IC design is developed. Its characteristics are analyzed by using a simple RC mesh model in order to investigate substrate coupling. The coupling effects due to the substrate were characterized with substrate resistivity, oxide thickness, substrate thickness. and physical distance. Thereby the silicon substrate effects are analytically investigated and verified with simulation. The analysis and simulation of the model have excellent agreements with MEDICI(2D device simulator) simulation results.

  • PDF

Synthesis and Properties of CuNx Thin Film for Cu/Ceramics Bonding

  • Chwa, Sang-Ok;Kim, Keun-Soo;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.222-226
    • /
    • 1998
  • $Cu_3N$ film deposited on silicon oxide substrate by r.f. reactive sputtering technique. Synthesis and properties of copper nitride film were investigated for its possible application to Cu metallization as adhesive interlayer between copper and $SiO_2. Cu_3N$ film was synthesized at the substrate temperature ranging from $100^{\circ}C$ to $200^{\circ}C$ and at nitrogen gas ratio above $X_{N2}=0.4. Cu_3N, CuN_x$, and FGM-structured $Cu/CuN_x$ films prepared in this work passed Scotch-tape test and showed improved adhesion property to silicon oxide substrate compared with Cu film. Electrical resistivity of copper nitride film had a dependency on its lattice constant and was ranged from 10-7 to 10-1 $\Omega$cm. Copper nitride film was, however, unstable when it was annealed at the temperature above $400^{\circ}C$.

  • PDF

Growth Characteristics of Amorphous Silicon Oxide Nanowires Synthesized via Annealing of Ni/SiO2/Si Substrates

  • Cho, Kwon-Koo;Ha, Jong-Keun;Kim, Ki-Won;Ryu, Kwang-Sun;Kim, Hye-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4371-4376
    • /
    • 2011
  • In this work, we investigate the growth behavior of silicon oxide nanowires via a solid-liquid-solid process. Silicon oxide nanowires were synthesized at $1000^{\circ}C$ in an Ar and $H_2$ mixed gas. A pre-oxidized silicon wafer and a nickel film are used as the substrate and catalyst, respectively. We propose two distinctive growth modes for the silicon oxide nanowires that both act as a unique solid-liquid-solid growth process. We named the two growth mechanisms "grounded-growth" and "branched-growth" modes to characterize their unique solid-liquid-solid growth behavior. The two growth modes were classified by the generation site of the nanowires. The grounded-growth mode in which the grown nanowires are generated from the substrate and the branchedgrowth mode where the nanowires are grown from the side of the previously grown nanowires or at the metal catalyst drop attached at the tip of the nanowire stem.

Effective Silicon Oxide Formation on Silica-on-Silicon Platforms for Optical Hybrid Integration

  • Kim, Tae-Hong;Sung, Hee-Kyung;Choi, Ji-Won;Yoon, Ki-Hyun
    • ETRI Journal
    • /
    • v.25 no.2
    • /
    • pp.73-80
    • /
    • 2003
  • This paper describes an effective method for forming silicon oxide on silica-on-silicon platforms, which results in excellent characteristics for hybrid integration. Among the many processes involved in fabricating silica-on-silicon platforms with planar lightwave circuits (PLCs), the process for forming silicon oxide on an etched silicon substrate is very important for obtaining transparent silica film because it determines the compatibility at the interface between the silicon and the silica film. To investigate the effects of the formation process of the silicon oxide on the characteristics of the silica PLC platform, we compared two silicon oxide formation processes: thermal oxidation and plasma-enhanced chemical vapor deposition (PECVD). Thermal oxidation in fabricating silica platforms generates defects and a cristobalite crystal phase, which results in deterioration of the optical waveguide characteristics. On the other hand, a silica platform with the silicon oxide layer deposited by PECVD has a transparent planar optical waveguide because the crystal growth of the silica has been suppressed. We confirm that the PECVD method is an effective process for silicon oxide formation for a silica platform with excellent characteristics.

  • PDF

Influence of Oxide Fabricated by Local Anodic Oxidation in Silicon (실리콘에 Local Anodic Oxidation으로 만든 산화물의 영향)

  • Jung, Seung-Woo;Byun, Dong-Wook;Shin, Myeong-Cheol;Schweitz, Michael A.;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.4
    • /
    • pp.242-245
    • /
    • 2021
  • In this work, we fabricated oxide on an n-type silicon substrate through local anodic oxidation (LAO) using atomic force microscopy (AFM). The resulting oxide thickness was measured and its correlation with load force, scan speed and applied voltage was analyzed. The surface oxide layer was stripped using a buffered oxide etch. Ohmic contacts were created by applying silver paste on the silicon substrate back face. LAO was performed at approximately 70% humidity. The oxide thickness increased with increasing the load force, the voltage, and reducing the scan speed. We confirmed that LAO/AFM can be used to create both lateral and, to some extent, vertical shapes and patterns, as previously shown in the literature.

Preparation of Iron Catalytic Layer onto Functionalized Silicon Substrate for Synthesis of Carbon Nanotubes

  • Adhikari, Prashanta Dhoj;Cho, Jumi;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.611-611
    • /
    • 2013
  • In this study, iron oxide nanoclusters layer (Nc) was prepared onto functionalized silicon substrate by wet method. The amine-terminated SAM fabricated on silicon substrate (APTMS/Si) was carried out by UV-treatment and immersed into the FeCl3/HCl aqueous solution. Then, Nc were immobilized onto oxidized SAM silicon substrate (SAMs/Si) through electrostatic interaction between cationic Nc and anionic SAMs/Si. This catalytic layer (Nc/SAMs/Si) was used to grow carbon nanotubes (CNTs). The characterization results clearly show that the well-graphitized CNTs were synthesized by using functionalized silicon substrate as a template having appropriate density of catalyst. These consequences show that SAM containing template is important to achieve the effective layer of catalyst to synthesize CNTs.

  • PDF