Browse > Article
http://dx.doi.org/10.5012/bkcs.2011.32.12.4371

Growth Characteristics of Amorphous Silicon Oxide Nanowires Synthesized via Annealing of Ni/SiO2/Si Substrates  

Cho, Kwon-Koo (School of Materials Science and Engineering, ERI and i-cube center, Gyeongsang National University)
Ha, Jong-Keun (School of Materials Science and Engineering, ERI and i-cube center, Gyeongsang National University)
Kim, Ki-Won (School of Materials Science and Engineering, ERI and i-cube center, Gyeongsang National University)
Ryu, Kwang-Sun (Department of Chemistry, University of Ulsan,)
Kim, Hye-Sung (Department of Nanomaterials Engineering, College of Nanoscience & Nanotechnology, Pusan National University)
Publication Information
Abstract
In this work, we investigate the growth behavior of silicon oxide nanowires via a solid-liquid-solid process. Silicon oxide nanowires were synthesized at $1000^{\circ}C$ in an Ar and $H_2$ mixed gas. A pre-oxidized silicon wafer and a nickel film are used as the substrate and catalyst, respectively. We propose two distinctive growth modes for the silicon oxide nanowires that both act as a unique solid-liquid-solid growth process. We named the two growth mechanisms "grounded-growth" and "branched-growth" modes to characterize their unique solid-liquid-solid growth behavior. The two growth modes were classified by the generation site of the nanowires. The grounded-growth mode in which the grown nanowires are generated from the substrate and the branchedgrowth mode where the nanowires are grown from the side of the previously grown nanowires or at the metal catalyst drop attached at the tip of the nanowire stem.
Keywords
Silicon oxide; Nanowires; Solid-Liquid-Solid; Vapor-Liquid-Solid; Growth behavior;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Bogue, R. W. Sens. Rev. 2004, 24, 253.   DOI   ScienceOn
2 Yu, D.; Hang, Q.; Ding, Y.; Zhang, H.; Bai, Z.; Wang, J.; Zou, Y.; Qian, W.; Xiong, G.; Feng, S. Appl. Phys. Lett. 1998, 73, 3076.   DOI
3 Wang, N.; Tang, Y. H.; Zhang, Y. F.; Lee, C. S.; Bello, I.; Lee, S. T. Chem. Phys. Lett. 1999, 299, 237.   DOI   ScienceOn
4 Cui, Y.; Lieber, C. M. Science 2001, 291, 851.   DOI   ScienceOn
5 Wagner, R. S.; Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89.   DOI
6 Givargizov, E. I. J. Cryst. Growth 1975, 31, 20.   DOI   ScienceOn
7 Yan, H. F.; Xing, Y. J.; Hang, Q. L.; Yu, D. P.; Wang, Y. P.; Xu, J.; Xi, Z. H.; Feng, S. Q. Chem. Phys. Lett. 2000, 323, 224.   DOI   ScienceOn
8 Lee, K. H.; Yang, H. S.; Baik, K. H.; Bang, J.; Vanfleet, R. R.; Sigmund, W. Chem. Phys. Lett. 2004, 383, 380.   DOI   ScienceOn
9 Hsu, C. H.; Chan, S. Y.; Chen, C. F. Jpn. J. Appl. Phys. 2007, 46(11), 7554.   DOI
10 Djamila, H.-B.; Pierre, P. C. R. Chimie 2007, 10, 658.   DOI   ScienceOn
11 Zhang, J. G.; Liu, J.; Wang, D.; Choi, D.; Fifield, L. S.; Wang, C.; Xia, G.; Nie, Z.; Yang, Z.; Pederson, L. R.; Graff, G. J. Power Sources 2010, 195, 1691.   DOI   ScienceOn
12 Srivastava, S. K.; Singh, P. K.; Singh, V. N.; Sood, K. N.; Haranath, D.; Kumar, V. Physica E 2009, 41, 1545   DOI   ScienceOn
13 Duraia, E. M.; Mansurov, Z. A.; Tokmolden, S.; Beall, G. W. Physica B 2010, 405, 1176.   DOI   ScienceOn
14 Favier, F.; Walter, E. C.; Zach, M. P. O.; Benter, T.; Penner, R. M. Science 2001, 293, 2227.   DOI   ScienceOn
15 Morales, A.; Lieber, C. M. Science 1998, 279, 208.   DOI   ScienceOn
16 Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947.   DOI   ScienceOn
17 Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Cates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353.   DOI   ScienceOn