• Title/Summary/Keyword: Silicon etching

Search Result 740, Processing Time 0.026 seconds

SAXS and AFM Study on Porous Silicon Prepared by Anodic Etching in HF-based Solution (SAXS와 AFM에 의한 HF-용액내 양극 에칭에 의해 제조된 기공성 실리콘의 구조연구)

  • Kim, Eu-gene;Kim, Hwa-Joong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1218-1223
    • /
    • 2004
  • Porous silicon materials have been shown to have bright prospects for applications in light emitting, solar cell, as well as light- and chemical-sensing devices. In this report, structures of porous silicon prepared by anodic etching in HF-based solution with various etching times were studied in detail by Atomic Force Microscopy and Small Angle X -ray Scattering technique using the high energy beam line at Pohang Light Source in Korea. The results showed the coexistence of the various pores with nanometer and submicrometer scales. For nanameter size pores, the mixed ones with two different shapes were identified: the larger ones in cylindrical shape and the smaller ones in spherical shape. Volume fractions of the cylindrical and the spherical pores were about equal and remained unchanged at all etching times investigated. On the whole uniform values of the specific surface area and of the size parameters of the pores were observed except for the larger specific surface area for the sample with the short etching time. The results implies that etching process causes the inner surfaces to become smoother while new pores are being generated. In all SAXS data at large Q vectors, Porod slope of -4 was observed, which supports the fact that the pores have smooth surfaces.

Nanoscale Processing on Silicon by Tribochemical Reaction

  • Kim, J.;Miyake, S.;Suzuki, K.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.67-68
    • /
    • 2002
  • The properties and mechanism of silicon protuberance and groove processing by diamond tip sliding using atomic force microscope (AFM) in atmosphere were studied. To control the height of protuberance and the depth of groove, the processed height and depth depended on load and diamond tip radius were evaluated. Nanoprotuberances and grooves were fabricated on a silicon surface by approximately 100-nm-radius diamond tip sliding using an atomic force microscope in atmosphere. To clarify the mechanical and chemical properties of these parts processed, changes in the protuberance and groove profiles due to additional diamond tip sliding and potassium hydroxide (KOH) solution etching were evaluated. Processed protuberances were negligibly removed, and processed grooves were easily removed by additional diamond tip sliding. The KOH solution selectively etched the unprocessed silicon area. while the protuberances, grooves and flat surfaces processed by diamond tip sliding were negligibly etched. Three-dimensional nanofabrication is performed in this study by utilizing these mechanic-chemically processed parts as protective etching mask for KOH solution etching.

  • PDF

Preparation and Characterization of Porous Silicon and Carbon Composite as an Anode Material for Lithium Rechargeable Batteries

  • Park, Junsoo;Lee, Jae-Won
    • Journal of Powder Materials
    • /
    • v.22 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • The composite of porous silicon (Si) and amorphous carbon (C) is prepared by pyrolysis of a nano-porous Si + pitch mixture. The nano-porous Si is prepared by mechanical milling of magnesium powder with silicon monoxide (SiO) followed by removal of MgO with hydrochloric acid (etching process). The Brunauer-Emmett-Teller (BET) surface area of porous Si ($64.52m^2g^{-1}$) is much higher than that before etching Si/MgO ($4.28m^2g^{-1}$) which indicates pores are formed in Si after the etching process. Cycling stability is examined for the nano-porous Si + C composite and the result is compared with the composite of nonporous Si + C. The capacity retention of the former composite is 59.6% after 50 charge/discharge cycles while the latter shows only 28.0%. The pores of Si formed after the etching process is believed to accommodate large volumetric change of Si during charging and discharging process.

fabrication of the Large Area Silicon Mirror for Slim Optical Pickup Using Micromachining Technology (미세가공기술을 이용한 초소형 광픽업용 대면적 실리콘 미러 제작)

  • Park Sung-Jun;Lee Sung-Jun;Choi Seog-Moon;Lee Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.89-96
    • /
    • 2006
  • In this study, fabrication of the large area silicon mirror is accomplished by anisotropic wet etching using micromachining technology for implementation of integrated slim optical pickup and the process condition is also established for improving the mirror surface roughness. Until now, few results have been reported about the production of highly stepped $9.74^{\circ}$ off-axis-cut silicon wafers using wet etching. In addition rough surface of the mirror is achieved in case of tong etching time. Hence a novel method called magnetorheolocal finishing is applied to enhance the surface quality of the mirror plane. Finally, areal peak to valley surface roughness of mirror plane is reduced about 100nm in large area of $mm^2$ and it is applicable to optical pickup using infrared wavelength.

A Study on Pumping Effect of Oxygen in Polysilicon Gate Etching

  • Kim, Nam-Hoon;Shin, Sung-Wook;Bin, Shin-Seok;Yu chang-Il kim;Chang, Eui-Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.2
    • /
    • pp.1-6
    • /
    • 2000
  • This article presents the experiments and considerations possible about gate etching in polysilicon when oxygen gas is added in chamber, We propose the novel study with optical emission spectroscopy in polysilicon etching. It is shown that added oxygen gases play an important role in enhencement of density in chlorine gases as a scavenger of silicon from SiCl$\_$x/. And a small amount of Si-O bonds are deposited and then the deposited thin film protect silicon dioxyde against reaction chlorine with silicon in SiO$_2$. Consequently, we can improve the selectivity of polysilicon the silicon dioxide, which is clearly explained in this model.

  • PDF

The effect of the ultrasonic wave on the texturisation of the silicon crystal-line solar cell (태양전지용 규소의 texture etching에 미치는 초음파의 영향)

  • 김정민;김영관
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.6
    • /
    • pp.261-266
    • /
    • 2003
  • The presence of ultrasonic wave in the caustic etching process enhances the etching rate and results in finer and more homogeneous textured structure of the crystalline silicon surface. The silicon solar cell textured in the caustic solution at $60^{\circ}C$ with ultrasonic wave gives higher cell performance than the cell textured at $70^{\circ}C$ without ultrasonic wave. This result indicates a strong possibility of lowering the production cost of the silicon solar cell through saving the thermal budget or expensive chemical normally employed in the texturisation of the crystalline silicon.

The research of porous Si for crystalline silicon solar cells (다공성 실리콘을 적용한 결정질 실리콘 태양전지에 관한 연구)

  • Lee, Jae-Doo;Kim, Min-Jeong;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.235-235
    • /
    • 2010
  • The Anti-reflection coating(ARC) properties can be formed on silicon substrate using a simple electrochemical etching technique. This etching step can be improve solar cell efficiency for a solar cell manufacturing process. This paper is based on the removal of silicon atoms from the surface a layer of porous silicon(PSi). Porous silicon is form by anodization and can be obtained in an electrolyte with hydrofluoric. It have demonstrated the feasibility of a very efficient porous Si layer, prepared by a simple, cost effective, electrochemical etching method. We expect our research can results approaching to lower than 10% of reflectance by optimization of process parametaer.

  • PDF

Fabrication of Porous Silicon Using Electrochemical Etching (전기화학적 식각을 이용한 다공성 실리콘 제조)

  • Jin, Dong-Woo;No, Sang-Soo;Kim, Gue-Hyun;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.121-124
    • /
    • 2004
  • The research on the porous silicon having low wafer stress during the oxidation process in IPOS(Isolation by Porous Oxidized Silicon) were carried out. Fine pores with less than 100A of diameter were found in the porous silicon which from p-type Si by electrochemical etching. In this study, it is possible to make the porous silicon with 59% of porosity.

  • PDF

Anisotropic Wet Etching of Single Crystal Silicon for Formation of Membrane Structure (멤브레인 구조 제작은 위한 단결정 실리콘의 이방성 습식 식각)

  • 조남인;강창민
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.4
    • /
    • pp.37-40
    • /
    • 2003
  • We have studied micro-machining technologies to fabricate parts and sensors used in the semiconductor equipment. The studies were based on the silicon integrated circuit processes, and composed of the anisotropic etching of single crystal silicon to fabricate a membrane structure for hot and cold junctions in the infrared absorber. KOH and TMAH were used as etching solutions for the anisotropic wet etching for membrane structure formation. The etching characteristic was observed for the each solution, and etching rate was measured depending upon the temperature and concentration of the etching solution. The different characteristics were observed according to pattern directions and etchant concentration. The pattern was made to incline $45^{\circ}$ on the primary flat, and optimum etching property was obtained in the case of 30 wt% and $90^{\circ}C$ of KOH etching solution for the formation of the membrane structure.

  • PDF

Influence of Ion Beam Etching on Silicon Schottky Barriers (실리콘 숏키장벽의 이온선 에칭의 영향)

  • Wang, Jin-Suk
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.2
    • /
    • pp.62-66
    • /
    • 1986
  • Ion beam etching of silicon with N2 and Ar gas has been found to cause the band edge to bend downward near the surface in p-type silicon. Rectifying, rather than ohmic contacts are obtained on the structures formed by evaporation of gold and titanium onto ion-bean-etched p-type silicon. The 1/C2 versus V relationship measured at 1MHz is found to be nonlinear for small voltages indicating alteration of the effective doping colse to the silicon surface.

  • PDF