Browse > Article
http://dx.doi.org/10.4150/KPMI.2015.22.1.15

Preparation and Characterization of Porous Silicon and Carbon Composite as an Anode Material for Lithium Rechargeable Batteries  

Park, Junsoo (LG Chem. Ltd.)
Lee, Jae-Won (Department of Energy Engineering, Dankook University)
Publication Information
Journal of Powder Materials / v.22, no.1, 2015 , pp. 15-20 More about this Journal
Abstract
The composite of porous silicon (Si) and amorphous carbon (C) is prepared by pyrolysis of a nano-porous Si + pitch mixture. The nano-porous Si is prepared by mechanical milling of magnesium powder with silicon monoxide (SiO) followed by removal of MgO with hydrochloric acid (etching process). The Brunauer-Emmett-Teller (BET) surface area of porous Si ($64.52m^2g^{-1}$) is much higher than that before etching Si/MgO ($4.28m^2g^{-1}$) which indicates pores are formed in Si after the etching process. Cycling stability is examined for the nano-porous Si + C composite and the result is compared with the composite of nonporous Si + C. The capacity retention of the former composite is 59.6% after 50 charge/discharge cycles while the latter shows only 28.0%. The pores of Si formed after the etching process is believed to accommodate large volumetric change of Si during charging and discharging process.
Keywords
Porous; Silicon; Anode; Lithium ion battery; Composite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. D. Besenhard, J. Yang and M. Winter: J. Power Sources, 68 (1997) 87.   DOI   ScienceOn
2 C. J. Wen and R. A. Huggins: J. Solid State Chem., 37 (1976) 271.
3 A. M. Wilson and J. R. Dahn: J. Electrochem. Soc., 142 (1995) 326.   DOI
4 H. Li, X. Huang, L. Chen, Z. Wu and Y. Liang: Electrochem. Solid-State Lett., 2 (1999) 547.   DOI
5 I.-S. Kim, P. N. Kumta and G. E. Blomgren: Electrochem. Solid-State Lett., 3 (2000) 493.
6 I.-S. Kim, G. E. Blomgren and P. N. Kumta: J. Power Sources, 130 (2004) 275.   DOI   ScienceOn
7 M. Yoshio, H. Wang, K. Fukuda, T. Umeno, N. Dimov and Z. Ogumi: J. Electrochem. Soc., 149 (2002) A1598.   DOI   ScienceOn
8 N. Dimov, S. Kugino and M. Yoshio: Electrochim. Acta, 48 (2003) 1579.   DOI   ScienceOn
9 J. Yang, B. F. Wang, K. Wang, Y. Liu, J. Y. Xie and Z. S. Wen: Electrochem. Solid-State Lett., 6 (2003) A154.   DOI   ScienceOn
10 H. Dong, X. P. Ai and H. X. Yang: Electrochem. Commun., 5 (2003) 952.   DOI   ScienceOn
11 H. Y. Lee and S. M. Lee: J. Power Sources, 112 (2002) 649.   DOI   ScienceOn
12 Y. Liu, K. Hanai, T. Matsumura, N. Imanishi, A. Hirano and Y. Takeda: Electrochem. Solid-State Lett., 7 (2004) A492.   DOI   ScienceOn
13 M. S. Park, Y. J. Lee, S. Rajendran, M. S. Song, H. S. Kim and J. Y. Lee: Electrochim. Acta, 50 (2005) 5561.   DOI   ScienceOn
14 H. Y. Lee, Y. L. Kim, M. K. Hong and S. M. Lee: J. Power Sources, 141 (2005) 159.   DOI   ScienceOn
15 J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J. Y. Xie and O. Yamamoto: Solid State Ionics, 152/153 (2002) 125.   DOI   ScienceOn
16 X. Yang, J. McBreen, W. Yoon, M. Yoshio, H. Wang, K. Fukuda and T. Umeno: Electrochem. Commun., 4 (2002) 893.   DOI   ScienceOn
17 J. H. Kim, H. Kim and H. J. Sohn: Electrochem. Commun., 7 (2005) 557.   DOI   ScienceOn
18 N. Dimov, S. Kugino and M. Yoshio: J. Power Sources, 136 (2004) 108.   DOI   ScienceOn
19 G. X. Wang, J. Yao and H. K. Liu: Electrochem. Solid- State Lett., 7 (2004) A250.   DOI   ScienceOn
20 T. Kim, S. Park and S. M. Oh: Electrochem. Commun., 8 (2006) 1461.   DOI   ScienceOn
21 B. C. Kim, H. Uono, T. Sato, T. Fuse, T. Ishihara and M. Senna: Solid State Ionics, 172 (2004) 33.   DOI   ScienceOn
22 T. Morita and N. Takami: J. Electrochem. Soc., 153 (2006) A425.   DOI   ScienceOn
23 B. C. Kim, H. Uono, T. Satou, T. Fuse, T. Ishihara, M. Ue and M. Senna: J. Electrochem. Soc., 152 (2005) A523.   DOI   ScienceOn