• 제목/요약/키워드: Silicon Micromachining

검색결과 144건 처리시간 0.024초

실리콘 마이크로머시닝과 RIE를 이용한 가속도센서의 제조 (Fabrication of an acceleration sensor using silicon micromachining and reactive ion etching)

  • 김동진;김우정;최시영
    • 센서학회지
    • /
    • 제6권6호
    • /
    • pp.430-436
    • /
    • 1997
  • SDB웨이퍼를 사용한 압저항 형태의 50 G용 가속도 센서를 실리콘 마이크로머시닝을 사용하여 제조하였다. 이 형태의 가속도 센서는 진동하는 사각형의 매스와 4개의 빔으로 구성되어 있다. 이 구조는 RIE를 이용한 건식식각과 KOH 용액을 이용한 습식식각을 이용하여 제조되었다. 정사각형의 보상구조가 매스 가장자리의 언더에칭에 기인하는 변형을 보상하기 위해 사용되었다. 제조된 센서는 인가된 가속도에 대하여 선형적인 출력전압특성을 보여주고 감도는 0에서 10 G까지 약 $88{\mu}V/V{\cdot}g$이었다.

  • PDF

마이크로 밀링 EDM 머신 개발 및 가공특성 분석 (Development of Micro Milling EDM and Analysis of Machined Characteristics)

  • 김선호;임한석
    • 한국기계가공학회지
    • /
    • 제10권1호
    • /
    • pp.1-7
    • /
    • 2011
  • Micromachining is gaining popularity due to recent advancements in MEMS(Micro Electro Mechanical Systems). Using conventional micromachining, it is relatively difficult to produce moving components in the order of microns. Photolithography for silicon material has high accuracy machining, but it has low aspect ratio. X-ray lithography has ultra high accuracy machining, but it has expensive cost. Micro-EDM(electro discharge machining) has been gaining popularity as a new alternative method to fabricate micro-structures. In this study, Micro-EDM machine is developed available for fabricate micro-structures and two processes such as side cut EDM and milling EDM is proposed. Several sets of experiment results have been performed to study the characteristics of the machining process.

스캐너를 이용한 고속 펨토초 레이저 가공 기술 (High-Speed Femtosecond Laser Micromachining with a Scanner)

  • 손익부;최성철;노영철;고도경;이종민
    • 한국레이저가공학회지
    • /
    • 제9권2호
    • /
    • pp.11-15
    • /
    • 2006
  • We report experimental results on the high-speed micromachining using a femtosecond laser (800 nm, 130 fs, 1kHz) and galvanometer scanner system (Raylase, Germany). Periodic hole drilling of silicon and glass with the scan speed of 1-20 mm/s is demonstrated. Finally, we demonstrate the utility of the femtosecond laser application to ITO patterning by using a high-speed femtosecond laser scanner system.

  • PDF

초고추파 집적 회로를 위한 새로운 실리콘 MEMS 패키지 (THe Novel Silicon MEMS Package for MMICS)

  • 권영수;이해영;박재영;김성아
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권6호
    • /
    • pp.271-277
    • /
    • 2002
  • In this paper, a MEMS silicon package is newly designed, fabricated for HMIC, and characterized for microwave and millimeter-wave device applications. The proposed package is fabricated by using two high resistivity silicon substrates and surface/bulk micromachining technology. It has a good performance characteristic such as -20㏈ of $S_11$/ and -0.3㏈ of $S_21$ up to 20㎓, which is useful in microwave region. It has also better heat transfer characteristics than the commonly used ceramic package. Since the proposed silicon MEMS package is easy to fabricate and wafer level chip scale packaging is also possible, the production cost can be much lower than the ceramic package. Since it will be a promising low-cost package for mobile/wireless applications.

Miniaturized Silicon Micromachined Bandpass Filter

  • 육종관
    • 한국전자파학회논문지
    • /
    • 제10권5호
    • /
    • pp.680-687
    • /
    • 1999
  • An extensive study on miniaturized bandpass filter(BPF) appropriate for mobile communication systems is presented in this paper. The miniaturization has been accomplished by incorporating low-loss high-index materials inside a resonating cavity fabricated in silicon substrate using micromachining etching techniques. By use of materials with dielectric constant $\varepsilon_r$=500, filters with volume less than 0.11 $mm^3$ have been designed at the center frequency of 5.8 GHz with 3.3% bandwidth. The electrical performances and design tolerances of these filters for a variety of materials and shapes are discussed and design guidelines are presented herein.

  • PDF

MEMS 박막의 푸와송 비 측정을 위한 미소굽힘기법 (Nano-bending method for the measurement of the Poisson's ratio of MEMS thin films)

  • 김종훈;김정길;연순창;전윤광;한준희;이호영;김용협
    • 한국항공우주학회지
    • /
    • 제31권2호
    • /
    • pp.57-62
    • /
    • 2003
  • MEMS(미소전기기계시스템) 박막의 푸와송비 측정을 위한 미소굽힙기법이 제안되었다. 푸와송비 측정에 민감한 쌍원시편(두 개의 원모양)을 설계하고 표면미세가공 공정을 사용하여 제작하였다. 미소압입기로 하중을 가한 쌍원시편의 하중-변위 곡선을 분석하여 푸와송비를 측정할 수 있었다. 제안도니 미소굽힘기법은 표면미세가공에 적합하여 소자제작과정에서의 동시측정이 가능하고(in-situ measurement), 소자가 위치해 있는 작은 영영에서의 물성을 국부적으로 측정할 수 있는 장점이 있다. 제안된 기법을 검증하기 위하여 저압화학기상증착법에 의하여 증착된 2.3㎛ 다결정실리콘(Poly-silicon)의 푸와송비를 측정하였다. 실험에 사용된 다결정실리콘막의 푸와송비는 0.2569 이고 쌍원시편의 강성에 대한 측정표준편차는 2.66% 이었다.

전도성 볼을 이용한 진동센서의 제작 및 특성 (Fabrication and characteristics of vibration sensor using conductive ball)

  • 장성욱;조용수;공성호;최시영
    • 센서학회지
    • /
    • 제14권6호
    • /
    • pp.374-380
    • /
    • 2005
  • Vibration sensors have a wide scope of applications in the field of monitoring systems that needs to perceive an undesirable physical vibration before a critical failure occurs in a system, and then costly unplanned repairs can be avoided. The conventional vibration sensors developed so far have many disadvantages, such as complex manufacturing process, bulkiness, high cost, less reliability and so on. This paper reports a simple-structured vibration sensor, which has been developed using a commercialized conductive ball and silicon bulk-micromachining technology. The sensor consists of a conductive ball placed in $600{\mu}m$-deep micromachined silicon groove, in which Au thin film has been patterned using a shadow mask technique. Prior to the formation of the Au thin film, the sharp convex corner was rounded for smooth meatl deposition on the non-planar surface at the edge of the groove. The measurement results of the fabricated vibration sensor demonstrate a stable response characteristic to low-frequency vibration range ($1{\sim}30{\;}Hz$).

SOI 웨이퍼의 열적거동 해석 (Thermal Behaviors Analysis for SOI Wafers)

  • 김옥삼
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.105-109
    • /
    • 2000
  • Micronization of sensor is a trend of the silicon sensor development with regard to a piezoresistive silicon pressure sensor the size of the pressure sensor diaphragm have become smaller year by year and a microaccelerometer with a size less than 200-300${\mu}m$ has been realized. In this paper we study some of the micromachining processes of SOI(silicon on insulator)for the microaccelerometer and their subsequent processes which might affect thermal loads. The finite element method(FEM) has been a standard numerical modeling technique extensively utilized in structural engineering discipline for design of SOI wafers. Successful thermal behaviors analysis and design of the SOI wafers based on the tunneling current concept using SOI wafer depend on the knowledge abut normal mechanical properties of the SCS(single crystal silicon)layer and their control through manufacturing process

  • PDF

군수용 고내압을 가지는 마이크로 압력센서의 개발 (Development of a Micro-pressure Sensor with high-resisting Pressure for Military Applications)

  • 심준환;서창택;이종현
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.1016-1021
    • /
    • 2005
  • A piezoresistive pressure sensor using a silicone rubber membrane has been fabricated on the selectively diffused (100)-oriented n/n+/n silicon substrates by a unique silicon micromachining technique using porous silicon ething. The width, length and thickness of the beam were 120${\mu}m$, 600${\mu}m$ and 7${\mu}m$, respectively and the thickness of the silicone rubber membrane was 40${\mu}m$. By the fusion of silicon beam and silicone rubber membrane, the mechanical strength of the pressure sensor could be highly improved due to smaller shear stress. The effectiveness of the sensor was confirmed through an experiment and FEM simulation in which the pressure sensor was characterized.

  • PDF

박막구조를 가진 폴리실리콘 압저항형 습도센서의 연구 (Study on Piezoresistive Humidity Sensor using Polycrystalline Silicon with Membrane)

  • 박성일;박새광
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1422-1424
    • /
    • 1994
  • This paper deals with piezoresistive humidity sensor using polycrystalline silicon (Poly-Si ) with membrane in sensors of semiconductor. Poly-Si piezoresistors which have no temperature dependancy are deposited on silicon wafer, membrane is formed with micromachining technology, then polyimide is formed as a hygroscopic layer. Whereas the principle of conventional humidify sensors are based on the change in electrical properties of the material, the humidity induced volume change of a polyimide layer leads to a deformation of a silicon membrane in this case. This deformation is transformed into an output voltage by Poly-Si piezoresistive. Wheatstone bridge. Fabricated piezoresistive humidity sensors showed good linearity, response time, and long term stability.

  • PDF