• Title/Summary/Keyword: Silicidation

Search Result 91, Processing Time 0.024 seconds

Microstructural Characterization of MOCVD RuOx Thin Films and Effects of Annealing Gas Ambient (MOCVD RuOx 박막의 미세구조 특성평가와 열처리 가스환경 영향)

  • Kim, Gyeong-Won;Kim, Nam-Su;Choe, Il-Sang;Kim, Ho-Jeong;Park, Ju-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.9
    • /
    • pp.423-429
    • /
    • 2002
  • RuOx thin films were fabricated by the method of liquid delivery MOCVD using Ru(C$_{8}$ $H_{13}$ $O_2$)$_3$ as the precursor and their thermal effects and conductivity were investigated. Ru films deposited at 25$0^{\circ}C$ were annealed at $650^{\circ}C$ for 1min with Ar, $N_2$ or N $H_3$ ambient. The changes of the micro-structure, the surface morphology and the electrical resistivity of the Ru films after annealing were studied. Ar gas was more effective than $N_2$ and N $H_3$ gases as an ambient gas for the post annealing of the Ru films, because of smaller resistivity and denser grains. The X-ray diffraction and X-ray photoelectron spectroscopy results indicate that the Ru $O_2$ phase and the silicidation are not observed regardless of the ambient gases. The minimum resistivity of the Ru film is found to have the value of 26.35 $\mu$Ω-cm in Ar ambient. Voids were formed at Ru/TiN interface of the Ru layer after annea1ing in $N_2$ ambient. The $N_2$ gas generated due to the oxidation of the TiN layer accumulated at the Ru/TiN interface, forming bubbles; consequently, the stacked film may peel off the Ru/TiN interface.e.

Microstructure Characterization for Nano-thick Nickel Cobalt Composite Silicides from 10 nm-Ni0.5Co0.5 Alloy films (10 nm 두께의 니켈 코발트 합금 박막으로부터 제조된 니켈코발트 복합실리사이드의 미세구조 분석)

  • Song, Oh-Sung;Kim, Sang-Yeob;Kim, Jong-Ryul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.308-317
    • /
    • 2007
  • We fabricated thermally-evaporated 10 nm-Ni/(poly)Si and 10 nm-$Ni_{0.5}Co_{0.5}$/(Poly)Si structures to investigate the microstructure of nickel silicides at the elevated temperatures required lot annealing. Silicides underwent rapid annealing at the temperatures of $600{\sim}1100^{\circ}C$ for 40 seconds. Silicides suitable for the salicide process formed on top of both the single crystal silicon actives and the polycrystalline silicon gates. A four-point tester was used to investigate the sheet resistances. A transmission electron microscope and an Auger depth profilescope were employed for the determination of vortical microstructure and thickness. Nickel silicides with cobalt on single crystal silicon actives and polycrystalline silicon gates showed low resistance up to $1100^{\circ}C$ and $900^{\circ}C$, respectively, while the conventional nickle monosilicide showed low resistance below $700^{\circ}C$. Through TEM analysis, we confirmed that a uniform, $10{\sim}15 nm$-thick silicide layer formed on the single-crystal silicon substrate for the Co-alloyed case while a non-uniform, agglomerated layer was observed for the conventional nickel silicide. On the polycrystalline silicon substrate, we confirmed that the conventional nickel silicide showed a unique silicon-silicide mixing at the high silicidation temperature of $1000^{\circ}C$. Auger depth profile analysis also supports the presence of this mixed microstructure. Our result implies that our newly proposed NiCo-alloy composite silicide process may widen the thermal process window for the salicide process and be suitable for nano-thick silicides.

A Study on Reaction Stability Between Nickel and Side-wall Materials With Silicidation Temperature (니켈실리사이드 제조온도에 따른 측벽물질과의 반응안정성 연구)

  • An, Yeong-Suk;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.71-75
    • /
    • 2001
  • The reaction stability of nickel with side-wall materials of SiO$_2$ and Si$_3$N$_4$ on p-type 4"(100) Si substrate were investigated. Ni on 1300 $\AA$ thick SiO$_2$ and 500 $\AA$ - thick Si$_3$N$_4$ were deposited. Then the samples were annealed at 400, 500, 750 and 100$0^{\circ}C$ for 30min, and the residual Ni layer was removed by a wet process. The interface reaction stability was probed by AES depth Profiling. No reaction was observed at the Ni/SiO$_2$ and Ni/Si$_3$N$_4$, interfaces at 400 and 50$0^{\circ}C$. At 75$0^{\circ}C$, no reaction occurred at Ni/SiO$_2$ interface, while $NiO_x$ and Si$_3$N$_4$ interdiffused at Ni/Si$_3$N$_4$ interface. At 100$0^{\circ}C$, Ni layers on SiO$_2$ and Si$_3$N$_4$ oxidized into $NiO_x$ and then $NiO_x$ interacted with side-wall materials. Once $NiO_x$ was formed, it was not removed in wet etching process and easily diffused into sidewall materials, which could lead to bridge effect of gate-source/drain.

  • PDF

Property of Nickel Silicide with 60 nm and 20 nm Hydrogenated Amorphous Silicon Prepared by Low Temperature Process (60 nm 와 20 nm 두께의 수소화된 비정질 실리콘에 따른 저온 니켈실리사이드의 물성 변화)

  • Kim, Joung-Ryul;Park, Jong-Sung;Choi, Young-Youn;Song, Oh-Sung
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.528-537
    • /
    • 2008
  • 60 nm and 20 nm thick hydrogenated amorphous silicon(a-Si:H) layers were deposited on 200 nm $SiO_2$/single-Si substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD). Subsequently, 30 nm-Ni layers were deposited by an e-beam evaporator. Finally, 30 nm-Ni/(60 nm and 20 nm) a-Si:H/200 nm-$SiO_2$/single-Si structures were prepared. The prepared samples were annealed by rapid thermal annealing(RTA) from $200^{\circ}C$ to $500^{\circ}C$ in $50^{\circ}C$ increments for 40 sec. A four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), and scanning probe microscopy(SPM) were used to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure, and surface roughness, respectively. The nickel silicide from the 60 nm a-Si:H substrate showed low sheet resistance from $400^{\circ}C$ which is compatible for low temperature processing. The nickel silicide from 20 nm a-Si:H substrate showed low resistance from $300^{\circ}C$. Through HRXRD analysis, the phase transformation occurred with silicidation temperature without a-Si:H layer thickness dependence. With the result of FE-SEM and TEM, the nickel silicides from 60 nm a-Si:H substrate showed the microstructure of 60 nm-thick silicide layers with the residual silicon regime, while the ones from 20 nm a-Si:H formed 20 nm-thick uniform silicide layers. In case of SPM, the RMS value of nickel silicide layers increased as the silicidation temperature increased. Especially, the nickel silicide from 20 nm a-Si:H substrate showed the lowest RMS value of 0.75 at $300^{\circ}C$.

Microstructure Characterization on Nano-thick Nickel Cobalt Composite Silicide on Polycrystalline Substrates (다결정 실리콘 기판 위에 형성된 나노급 니켈 코발트 복합실리사이드의 미세구조 분석)

  • Song, Oh-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.195-200
    • /
    • 2007
  • We fabricated thermally-evaporated 10 nm-Ni/70 w-Poly-Si/200 $nm-SiO_2/Si$ and $10nm-Ni_{0.5}Co_{0.5}/70$ nm-Poly-Si/200 $nm-SiO_2/Si$ structures to investigate the microstructure of nickel monosilicide at the elevated temperatures required fur annealing. Silicides underwent rapid anneal at the temperatures of $600{\sim}1100^{\circ}C$ for 40 seconds. Silicides suitable for the salicide process formed on top of the polycrystalline silicon substrate mimicking the gates. A four-point tester was used to investigate the sheet resistances. A transmission electron microscope and an Auger depth profile scope were employed for the determination of cross sectional microstructure and thickness. 20nm thick nickel cobalt composite silicides on polycrystalline silicon showed low resistance up to $900^{\circ}C$, while the conventional nickle silicide showed low resistance below $900^{\circ}C$. Through TEM analysis, we confirmed that the 70nm-thick nickel cobalt composite silicide showed a unique silicon-silicide mixing at the high silicidation temperature of $1000^{\circ}C$. We identified $Ni_3Si_2,\;CoSi_2$ phase at $700^{\circ}C$ using an X-ray diffractometer. Auger depth profile analysis also supports the presence of this mixed microstructure. Our result implies that our newly proposed NiCo composite silicide from NiCo alloy films process may widen the thermal process window for the salicide process and be suitable for nano-thick silicides.

  • PDF

Property of Nickel Silicides on ICP-CVD Amorphous Silicon with Silicidation Temperature (ICP-CVD 비정질 실리콘에 형성된 처리온도에 따른 저온 니켈실리사이드의 물성 변화)

  • Kim, Jong-Ryul;Choi, Young-Youn;Park, Jong-Sung;Song, Oh-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.303-310
    • /
    • 2008
  • We fabricated hydrogenated amorphous silicon(a-Si:H) 140 nm thick film on a $180\;nm-SiO_2/Si$ substrate with an inductively-coupled plasma chemical vapor deposition(ICP-CVD) equipment at $250^{\circ}C$. Moreover, 30 nm-Ni film was deposited with a thermal-evaporator sequently. Then the film stack was annealed to induce silicides by a rapid thermal annealer(RTA) at $200{\sim}500^{\circ}C$ in every $50^{\circ}C$ for 30 minuets. We employed a four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscope(FE-SEM), transmission electron microscope(TEM), and scanning probe microscope(SPM) in order to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure evolution, and surface roughness, respectively. We confirmed that nano-thick high resistive $Ni_3Si$, mid-resistive $Ni_2Si$, and low resistive NiSi phases were stable at the temperature of <300, $350{\sim}450^{\circ}C$, and >$450^{\circ}C$, respectively. Through SPM analysis, we confirmed the surface roughness of nickel silicide was below 12 nm, which implied that it was superior over employing the glass and polymer substrates.

Effects of the Ge Prearmophization Ion Implantation on Titanium Salicide Junctions (게르마늄 Prearmophization 이온주입을 이용한 티타늄 salicide 접합부 특성 개선)

  • Kim, Sam-Dong;Lee, Seong-Dae;Lee, Jin-Gu;Hwang, In-Seok;Park, Dae-Gyu
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.812-818
    • /
    • 2000
  • We studied the effects of Ge preamorphization (PAM) on 0.25$\mu\textrm{m}$ Ti-salicide junctions using comparative study with As PAM. For each PAM schemes, ion implantations are performed at a dose of 2E14 ion/$\textrm{cm}^2$ and at 20keV energy using $^{75}$ /As+and GeF4 ion sources. Ge PAM showed better sheet resistance and within- wafer uniformity than those of As PAM at 0.257m line width of n +/p-well junctions. This attributes to enhanced C54-silicidation reaction and strong (040) preferred orientation of the C54-silicide due to minimized As presence at n+ junctions. At p+ junctions, comparable performance was obtained in Rs reduction at fine lines from both As and Ge PAM schemes. Junction leakage current (JLC) revels are below ~1E-14 A/$\mu\textrm{m}^{2}$ at area patterns for all process conditions, whereas no degradation in JLC is shown under Ge PAM condition even at edge- intensive patterns. Smooth $TiSi_2$ interface is observed by cross- section TEM (X- TEM), which supports minimized silicide agglomeration due to Ge PAM and low level of JLC. Both junction break- down voltage (JBV) and contact resistances are satisfactory at all process conditions.

  • PDF

The Enhancement of Thermal Stability of Nickel Monosilicide by Ir and Co Insertion (Ir과 Co를 첨가한 니켈모노실리사이드의 고온 안정화 연구)

  • Yoon, Ki-Jeong;Song, Oh-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1056-1063
    • /
    • 2006
  • Thermal evaporated 10 nm-Ni/l nm-Ir/(or polycrystalline)p-Si(100) and 10 nm-$Ni_{50}Co_{50}$/(or polycrystalline)p-Si(100) films were thermally annealed using rapid thermal annealing fur 40 sec at $300{\sim}1200^{\circ}C$. The annealed bilayer structure developed into Ni(Ir or Co)Si and resulting changes in sheet resistance, microstructure, phase and composition were investigated using a four-point probe, a scanning electron microscopy, a field ion beam, an X-ray diffractometer and an Auger electron spectroscope. The final thickness of Ir- and Co-inserted nickel silicides on single crystal silicon was approximately 20$\sim$40 nm and maintained its sheet resistance below 20 $\Omega$/sq. after the silicidation annealing at $1000^{\circ}C$. The ones on polysilicon had thickness of 20$\sim$55 nm and remained low resistance up to $850^{\circ}C$. A possible reason fur the improved thermal stability of the silicides formed on single crystal silicon substrate is the role of Ir and Co in preventing $NiSi_2$ transformation. Ir and Co also improved thermal stability of silicides formed on polysilicon substrate, but this enhancement was lessened due to the formation of high resistant phases and also a result of silicon mixing during high temperature diffusion. Ir-inserted nickel silicides showed surface roughness below 3 nm, which is appropriate for nano process. In conclusion, the proposed Ir- and Co- inserted nickel silicides may be superior over the conventional nickel monosilicides due to improved thermal stability.

  • PDF

Effect of hydrogen in Ni-silicide with Iodine Catalyst Deposited Ni Film by using Atomic Layer Deposition

  • Gang, Hui-Seong;Ha, Jong-Bong;Kim, Gi-Won;Kim, Dong-Seok;Im, Gi-Sik;Kim, Seong-Nam;Lee, Gwang-Man;Lee, Jeong-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.234-234
    • /
    • 2010
  • 최근 CMOS 소자 크기가 축소됨에 따라 소스와 드레인 영역에서의 접촉저항을 줄이기 위하여, 실리사이드 공정이 많이 연구되고 있다. 실리사이드 물질로서 NiSi는 낮은 저항률과 낮은 실리콘 소모, 낮은 공정온도, 등의 장점을 가지고 있다. 그러나, 실리사이드 형성으로 인한 나노소자의 소오스/드레인에서정션(junction) 누설전류의 증가는 큰 문제가 되므로 실리콘과 실리사이드 계면의 특성이 중요하다. 본 연구에서는 니켈을 이용한 실리사이드 형성시 계면 활성제인 에틸 요오드를 이용하여 실험을 진행하였다. 금속 유기 전구체인 MABONi을 사용하여 ALD 방식으로 증착 한 니켈 박막과 니켈 핵 형성시 계면활성제인 에틸요오드의 처리 방법에 따른 Ni-silicide 박막의 특성을 비교, 분석하였다. 먼저 자연산화막을 건식식각으로 제거한 뒤, 첫 번째 샘플에서는 10회의 주기로 초기 니켈을 증착한 뒤, 에틸요오드로 니켈의 표면 위를 처리하고, 다시 200회의 주기로 니켈을 증착하였으며, 두 번째는 첫 번째 방식에서 에틸요오드 주입 시 동시에 수소도 함께 주입하였다. 세 번째는 비교를 위해 에틸요오드 처리를 하지 않고 니켈 박막만을 증착 하였다. 이어서, 각 샘플을 급속 열처리 장비에서 $400^{\circ}C$부터 $900^{\circ}C$까지 각각 30sec간 열처리를 진행후, 반응하지 않은 잔여 니켈을 제거한 후, XRD(x-ray diffraction), AES(auger), 그리고 4-point probe 등을 이용하여 형성된 실리사이드의 특성을 분석하였다. 에틸요오드와 함께 수소를 주입한 경우 계면에서의 산소 불순물과 카본 성분이 효과적으로 제거되어 $400^{\circ}C$에서 $2.9{\Omega}/{\Box}$ 의 낮은 면저항을 가지는 NiSi가 형성되었고 모든 온도구간에서 다른 샘플에 비하여 가장 낮은 면저항 분포를 보였다. 이는 분해 흡착된 요오드에 의한 계면 특성 향상과 카본 성분이 포함된 잔여물들이 수소처리에 의해 효율적으로 제거되어 실리사이드의 특성이 향상되었기 때문이다. 계면활성제를 사용하지 않은 경우에는 $500^{\circ}C$에서 NiSi가 형성되었다. 반면에 에틸요오드로만 표면을 처리한 경우에는 니켈과 실리콘 계면에서의 카본 성분에 의하여 silicidation 이 충분히 일어나지 않았다. 이러한 결과는 향후 45nm 이하의 CMOS 공정상에서 소스와 드레인의 낮은 누설전류를 가지고, 접촉저항을 줄이기 위한 니켈 실리사이드 형성에 큰 도움을 줄 것으로 기대된다.

  • PDF

Formation of Thin $CoSi_2$by Layer Inversion of Co/Nb bi-layer (Co/Nb 이중층 구조의 막역전을 이용한 박막 $CoSi_2$의 형성)

  • Lee, Jong-Mu;Gwon, Yeong-Jae;Lee, Byeong-Uk;Kim, Yeong-Uk;Lee, Su-Cheon
    • Korean Journal of Materials Research
    • /
    • v.6 no.8
    • /
    • pp.779-785
    • /
    • 1996
  • Thin $700^{\circ}C$films were formed through layer inversion of Co/Nb bilayer during rapid thermal annealing(RTA). The Nb interlayer seems to effectively prevent over-consumption of Si and to control the silicidation reaction by forming Co-Nb intermetallic compounds and removing the native oxide formed on Si substrate which interferes the uniform Co-Si interaction. The final layer structure of the Co/Nb bilayer after $700^{\circ}C$ RTA was found to be ${Nb}_{2}{O}_{3}$/${Co}_{2}$Si.CoSi/${NbCo}_{x}$/Nb(O, C)/${CoSi}_{2}$/ Si. The layer inversion and the formation of a stable CoSi, phase occurred above $700^{\circ}C$, and the Nb silicides were not found at any annealing temperature. These may be due to the formation of very stable Co-Nb intermetallic compounds and Nb oxides which limit the moving of Co and Si.

  • PDF