A Study on Reaction Stability Between Nickel and Side-wall Materials With Silicidation Temperature

니켈실리사이드 제조온도에 따른 측벽물질과의 반응안정성 연구

  • An, Yeong-Suk (Dept. of Material Science and Eng., University of Seoul) ;
  • Song, Oh-Sung (Dept. of Material Science and Eng., University of Seoul)
  • 안영숙 (서울시립대학교 재료공학과) ;
  • 송오성 (서울시립대학교 재료공학과)
  • Published : 2001.02.01

Abstract

The reaction stability of nickel with side-wall materials of SiO$_2$ and Si$_3$N$_4$ on p-type 4"(100) Si substrate were investigated. Ni on 1300 $\AA$ thick SiO$_2$ and 500 $\AA$ - thick Si$_3$N$_4$ were deposited. Then the samples were annealed at 400, 500, 750 and 100$0^{\circ}C$ for 30min, and the residual Ni layer was removed by a wet process. The interface reaction stability was probed by AES depth Profiling. No reaction was observed at the Ni/SiO$_2$ and Ni/Si$_3$N$_4$, interfaces at 400 and 50$0^{\circ}C$. At 75$0^{\circ}C$, no reaction occurred at Ni/SiO$_2$ interface, while $NiO_x$ and Si$_3$N$_4$ interdiffused at Ni/Si$_3$N$_4$ interface. At 100$0^{\circ}C$, Ni layers on SiO$_2$ and Si$_3$N$_4$ oxidized into $NiO_x$ and then $NiO_x$ interacted with side-wall materials. Once $NiO_x$ was formed, it was not removed in wet etching process and easily diffused into sidewall materials, which could lead to bridge effect of gate-source/drain.

Keywords

References

  1. S. Wolf, 'Silicon Processing for the VLSI era', Lat-tice Press, (1995)
  2. S.M. Sze, 'Semiconductor devices', McGraw-Hill, (1985)
  3. S.M. Sze, 'VLSI Technology', John Wiley & Sons, (1988)
  4. C.M. Osburn, J.Y. Tsai and J. Sun, J. Electron. Mater. 25, 1725 (1996) https://doi.org/10.1007/s11664-996-0028-x
  5. T. Ohguro et al., IEEE T-ED'94, 2305, 1994 https://doi.org/10.1109/16.337443
  6. J.B. Laskey, J.S. Nakos, O.J. Chan and P.J. Geiss, IEEE Trans. Electron Dev., 38, 262 (1991) https://doi.org/10.1109/16.69904
  7. T. Ohguro et al., Electrochem. Society Sympo, 1997
  8. S.J. Hilenius, H.I. Cong, J. Lebowitz, J.M. Andrews, R.L. Field, L. Manchanda, W.S. Lindenberger, D.M. Boulin and W.T. Lynch, A bs. 132, The Electrochem. Soc. Ext. A bs. 89-1, 184 (1989)
  9. M.L.A. Dass, D.B. Fraser, and C.S. Wei, Appl, Phys. Lett. 58 (12), 1308 (1991) https://doi.org/10.1063/1.104345
  10. T. Morimoto et al., IEEE Trans. Electron Dev., 42, 915 (1995) https://doi.org/10.1109/16.381988
  11. T. Ohguro et al., IEDM'95, 453 (1995) https://doi.org/10.1109/IEDM.1995.499236
  12. F. Deng, R.A. Johnson, P.M. Asbeck, S.S. Lau, W. B. Dubbelday, T. Hsiao and J. Woo, J. Appl. Phys. 81 (12), 8047 (1997) https://doi.org/10.1063/1.365410
  13. S.J. Nagtel, I. Coulthard, T.K. Sham, D.X. Xu, L Erickson and S.R. Das, Appl. Phys. Lett. 74(19) 2893 (1999) https://doi.org/10.1063/1.124049
  14. B.A. Julies, D. Knoesen, R. Pretorius and D Adams, Thin Solid Films 347, 201 (1999) https://doi.org/10.1016/S0040-6090(99)00004-8
  15. A.E. Morgan, E.K. Broadbent, K.N. Ritz, D.K. Sadana and B.J. Burow, J. Appl, Phys, 64, 344 (1988) https://doi.org/10.1063/1.341434
  16. C.Y. Ting, M. Wittmer, S.S. Iyer and S.B. Brodsky, J. Electrochem. Soc. 131, 2934 (1984) https://doi.org/10.1149/1.2115445
  17. N.S. Parekh. H. Roede, A.A. Bos, A.G.M. Jonkers and R.D.J. Verhaar, IEEE Trans. Elec. Dev. ED-39, 88 (1991) https://doi.org/10.1109/16.65740
  18. G.J.P. Krooshof, F.H.P.M. Habraken, W.F. van der Weg, L. Van den hovw, K. Maex and R.F. De Keersmaecker, J. Appl, Phys. 63, 5110 (1988) https://doi.org/10.1063/1.340411