• Title/Summary/Keyword: Silica-supported

Search Result 110, Processing Time 0.024 seconds

Aluminium Salt of Phosphomolybdic Acid Fabricated by Nanocasting Strategy: An Efficient System for Selective Oxidation of Benzyl Alcohols

  • Aliyan, Hamid;Fazaeli, Razieh;Habibollahi, Nasibeh
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.5
    • /
    • pp.591-596
    • /
    • 2012
  • Preparation of $AlPMo_{12}O_{40}$ (AlPMo) salts, supported on mesostructured SBA-15 silica, by the reaction deposition strategy causes the formation of isolated AlPMo nanocrystals inside the nanotubular channels. The remarkable characteristic of the SBA-15 structure is that all the cylindrical pores are connected by some small channels. This makes the whole pore system in SBA-15 three-dimensional. We have used 2D hexagonal SBA-15 silicas as hard templates for the nanofabrication of AlPMo salt nanocrystal. The oxidation of alcohols occurs effectively and selectively with $H_2O_2$ as the oxidant. AlPMo salt nanocrystal was used as the catalyst.

Effect of Alkali Promoter on the CO Adsorption of Silica Supported Transition Metal Catalysts (실리카 지지 전이원소 금속촉매의 일산화탄소 흡착에 미치는 알칼리 촉진제의 영향)

  • Selhun Chang;Hyeongseok Park;Jo Woong Lee;Sang Youn Park;Hwee Chul Shin
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.374-383
    • /
    • 1984
  • In order to elucidate the effect of alkali promoter on chemisorption of carbon monoxide on silica supported transition metal catalysts we have investigated the infrared spectra for carbon monoxide chemisorbed on silica supported nickel with and without potassium coating within the frequency range of 1800 ~ 2100cm$^{-1}$ at various nickel concentrations and CO pressures. For the system without potassium coating the IR band intensities are found to greatly depend on the nickel conwgfra concentration although the band positions are scarcely affected. The band positions are nearly coincident with those reported by other people, but we have clarified that the 2057cm$^{-1}$ band arises from Ni(CO)$_4$ molecules physisorbed on silicagel. Besides this, the effect of temperature on CO chemisorption has also been investigated. On coating with potassium we have found that all the bands observed for the system without potassium coating suffer red shifts by 2 ~ 10cm$^{-1}$ and the formation of Ni(CO)$_4$ is inhibited. Furthermore, we have recognized that on the nickel surface with potassium coating a disproportionation may occur to yield carbon dioxide molecules.

  • PDF

A Green Protocol for Catalytic Conversion of Epoxides to 1,2-Diacetoxy Esters with Phosphomolybdic Acid Alone or Its Supported on Silica Gel

  • Zeynizadeh, Behzad;Sadighnia, Leila
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2644-2648
    • /
    • 2010
  • Catalytic conversion of structurally different epoxides to the corresponding 1,2-diacetoxy esters was carried out readily with phosphomolybdic acid alone or its supported on $SiO_2$. The reactions were carried out under solvolytic or solvent free conditions within 5-15 min at room temperature. The product 1,2-diacetates were obtained in high to excellent yields. Supporting of phosphomolybdic acid on $SiO_2$ showed the better catalytic activity than $Al_2O_3$. Conversion of optically pure R-(+)-styrene oxide to S-(+)-1,2-diacetoxy-1-phenylethane was carried with phosphomolybdic acid in high yield and stereospecificity.

Spectroscopic Analysis on Michael Addition Reaction of Secondary Amino Groups on Silica Surface with 3-(Acryloyloxy)-2-hydroxypropyl Methacrylate (2차 아미노기가 결합된 실리카 나노 입자 표면에 3-(Acryloyloxy)-2-hydroxypropyl Methacrylate의 마이클 부가 반응에 대한 분광학적 분석)

  • Lee, Sangmi;Ha, Ki Ryong
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.257-264
    • /
    • 2014
  • In this study, we modified silica nanoparticles with bis[3-(trimethoxysilyl)propyl]ethylenediamine (BTPED) silane coupling agent, which has two secondary amino groups in a molecule, to introduce amino groups on the silica surface. After modification of silica, we used acrylate group containing 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) to introduce polymerizable methacrylate groups by Michael addition reaction. We used Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and liquid and solid state cross polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR) to understand the reactions between N-H groups of BTPED modified silica surface and acrylate groups of AHM monomer. We confirmed Michael addition reaction between BTPED modified silica and AHM completed in 2 hr reaction time. We also found increased methacrylate group introduction with increase of mol ratio of the acrylate group of AHM to N-H group of BTPED modified silica by increase of C=O peak area of measured FTIR spectra. These results were also supported by EA and solid state $^{13}C$ and $^{29}Si$ NMR results.

A Study on the Adsorption of Carbonmonoxide on Silica Supported Ru-Fe Catalyst by Infrared Spectroscopy (실리카지지 루테늄-철 촉매에서 일산화탄소의 흡착에 관한 적외선 분광법을 이용한 연구)

  • Park, Sang-Youn;Ryu, Kwang-Sun;Yang, Sung-Bong;Yoon, Koo-Sik
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.81-86
    • /
    • 2010
  • On adsorbing carbon monoxide (CO) on the silica supported ruthenium/iron alloy ($Ru/Fe-SiO_2$) samples above mole ratio 9/1 of Ru/Fe five bands ($2138.7{\sim}2142.5cm^{-1}$, $2067.3{\sim}2073.1cm^{-1}$, $1976.7{\sim}2017.2cm^{-1}$, $1737.9{\sim}1799.3cm^{-1}$, $1625.7cm^{-1}$) were observed, and in $Ru/Fe-SiO_2$ samples below mole ratio 8/2 of Ru/Fe two bands ($1934.0{\sim}1990.2cm^{-1}$, $1625.7cm^{-1}$) were observed. The $2138.7{\sim}2142.5cm^{-1}$ bands, the $2067.3{\sim}2073.1cm^{-1}$ bands, and the $1988.3{\sim}2030.7cm^{-1}$ bands may be ascribed to stretching vibrations of CO molecules lineally bonded to the Ru atoms on supported Ru/Fe cluster surface, the $1737.9{\sim}1799.3cm^{-1}$ bands to stretching vibrations of CO molecules bridge bonded to the Ru atoms on supported Ru/Fe cluster surface or to stretching vibrations of CO molecules bonded to the Ru atoms on high Miller index planes, and the $1934.0{\sim}1990.2cm^{-1}$ bands to stretching vibrations of CO molecules lineally bonded to the Fe atoms on supported Ru/Fe cluster surface. The absorbances of the $1934.0{\sim}1990.2cm^{-1}$ bands in $Ru/Fe-SiO_2$ samples gradually increased with the increases of Ru/Fe mole ratio below the ratio of 8/2. This phenomena may be ascribed to the increases of Fe concentration of surface compared with the one of the sample and to the increases of surface area of supported Ru/Fe cluster according as increase of Ru/Fe mole ratio below the ratio of 8/2 compared with the $Fe-SiO_2$ sample.

Immobilization Metallocene Inside Surface-functionalized Nanopore of Micelle-Templated Silica and its Ethylene Polymerization (표면 기능화된 Micelle-Templated Silica 나노세공 내 메탈로센 담지 및 에틸렌 중합)

  • Lee, Jeong-Suk;Yim, Jin-Heong;Ko, Young-Soo
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.111-116
    • /
    • 2012
  • A functionalization of mesoporous materials with organosilane was carried out via a post-synthesis grafting method and $(n-BuCp)_2ZrCl_2$/methylaluminoxane (MAO) as subsequently immobilized on the functionalized mesoporous materials for ethylene polymerization. Organosilanes having amine, cyano or imidazoline group such as $N$-[(3-trimethoxysilyl)propyl]ethylenediamine (2NS), 4-(triethoxysilyl)butyronitrile (1NCy), 1-(3-triethoxysilylpropyl)-2-imidazoline (2NIm) were used for the surface functionalization of mesoporous materials. In the SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ catalyst preparation, the amount of MAO in feed increased with an decrease in the Zr content of the supported catalyst, and Al content in the supported catalyst increased. The ethylene homopolymerization activity of SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ dramatically increased as the amount of MAO in feed increased. Furthermore, when the immobilization time was 6 hrs, SBA-15/2NS/$(n-BuCp)_2ZrCl_2$ showed the highest activity. The activities of supported 2NS-, 1NCy-, 2NIm-functionalized catalysts decreased in the following order, SBA-15/2NS/ > SBA-15/2NIm/ > SBA-15/1NCy/$(n-BuCp)_2ZrCl_2$. 2NS and 2NIm which have two amine groups per silane molecule were shown to interact with $(n-BuCp)_2ZrCl_2$ strongly compared to 1NCy which has one amine group. Thus, the activities increased with an increase in the nitrogen and the Zr content of the supported catalysts.

Preparation of Nanoporous Ceramic Membranes by Sol-gel Method and Characterization of Gas Permeation (졸-겔법에 의한 나노기공성 세라믹 막의 제조 및 기체투과 특성)

  • Lee, Yong-Taek;Choi, Ga-Young;Han, Hyuk-Hee
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.176-184
    • /
    • 2008
  • Nano-porous ceramic membranes was synthesized by the sol-gel method. Gas permeation of hydrogen and nitrogen was determined by single composition gas. Pore size $0.1{\mu}m$ and porosity 32% of flat type ${\alpha}-Al_2O_3$ substrate was manufactured. An intermediate ${\gamma}-Al_2O_3$ layer with pore size of 4 nm was formed by dip-coating. Polymeric silica sol was synthesized by acid catalyzed hydrolysis and condensation of tetra-ethyl-ortho-silicate. Supported membranes on alumina were prepared by dipping and calcining. He, $N_2$ permeation experiments with nanoporous sol-gel modified supported ceramic membranes were peformed to determine the gas transport characteristics. $He/N_2$ permselectivity around $100{\sim}160$ and helium permeation in the order of $10^{-7}mol/m^2{\cdot}s{\cdot}Pa$ were measured in the temperature range of $303{\sim}363K$.

The Partial Oxidation of Methane by Nitrous Oxide over Silica-Supported 12-Molybdophosphoric Acid (실리카 담지 12-몰리브도인산 촉매상에서의 아산화질소에 의한 메탄의 부분산화반응)

  • Hong, Seong-Soo;Woo, Hee-Chul;Ju, Chang-Sik;Lee, Gun-Dae;Moffat, J.B.
    • Applied Chemistry for Engineering
    • /
    • v.5 no.1
    • /
    • pp.139-148
    • /
    • 1994
  • The partial oxidation of methane with nitrous oxide on silica-supported metal-oxygen cluster compounds, known as heteropoly acids, has been studied. The effects of several variables such as reaction temperature, partial pressure of reactants, residence time, loading of the catalysts, and pretreatment temperature, on the conversion and product distribution were observed. The kinetics also has been studied. The conversion and yield of formaledehyde show maximum values at a loading of 20 wt%. The apparent reaction order of methane conversion is ca. 1.0 with respect to $CH_4$ and ca. 0.4 with respect to $N_2O$. In addition, the apparent activation energy is 30.78 kcal/mole. The addition of small quantities methane whereas water introduced to the reactant decreased the activity of catalyst under present study.

  • PDF