A Study on the Adsorption of Carbonmonoxide on Silica Supported Ru-Fe Catalyst by Infrared Spectroscopy

실리카지지 루테늄-철 촉매에서 일산화탄소의 흡착에 관한 적외선 분광법을 이용한 연구

  • 박상윤 (울산대학교 자연과학대학 화학과) ;
  • 류광선 (울산대학교 자연과학대학 화학과) ;
  • 양성봉 (울산대학교 자연과학대학 화학과) ;
  • 윤구식 (울산대학교 자연과학대학 화학과)
  • Received : 2009.10.20
  • Accepted : 2009.12.11
  • Published : 2010.02.10

Abstract

On adsorbing carbon monoxide (CO) on the silica supported ruthenium/iron alloy ($Ru/Fe-SiO_2$) samples above mole ratio 9/1 of Ru/Fe five bands ($2138.7{\sim}2142.5cm^{-1}$, $2067.3{\sim}2073.1cm^{-1}$, $1976.7{\sim}2017.2cm^{-1}$, $1737.9{\sim}1799.3cm^{-1}$, $1625.7cm^{-1}$) were observed, and in $Ru/Fe-SiO_2$ samples below mole ratio 8/2 of Ru/Fe two bands ($1934.0{\sim}1990.2cm^{-1}$, $1625.7cm^{-1}$) were observed. The $2138.7{\sim}2142.5cm^{-1}$ bands, the $2067.3{\sim}2073.1cm^{-1}$ bands, and the $1988.3{\sim}2030.7cm^{-1}$ bands may be ascribed to stretching vibrations of CO molecules lineally bonded to the Ru atoms on supported Ru/Fe cluster surface, the $1737.9{\sim}1799.3cm^{-1}$ bands to stretching vibrations of CO molecules bridge bonded to the Ru atoms on supported Ru/Fe cluster surface or to stretching vibrations of CO molecules bonded to the Ru atoms on high Miller index planes, and the $1934.0{\sim}1990.2cm^{-1}$ bands to stretching vibrations of CO molecules lineally bonded to the Fe atoms on supported Ru/Fe cluster surface. The absorbances of the $1934.0{\sim}1990.2cm^{-1}$ bands in $Ru/Fe-SiO_2$ samples gradually increased with the increases of Ru/Fe mole ratio below the ratio of 8/2. This phenomena may be ascribed to the increases of Fe concentration of surface compared with the one of the sample and to the increases of surface area of supported Ru/Fe cluster according as increase of Ru/Fe mole ratio below the ratio of 8/2 compared with the $Fe-SiO_2$ sample.

실리카 지지 루테늄과 철의 합금($Ru/Fe-SiO_2$) 시료에 일산화탄소(CO)를 흡착시켰을 때 Ru/Fe의 몰비 9/1 이상에서 다섯 적외선 흡수띠($2138.7{\sim}2142.5cm^{-1}$, $2067.3{\sim}2073.1cm^{-1}$, $1976.7{\sim}2017.2cm^{-1}$, $1737.9{\sim}1799.3cm^{-1}$, $1625.7cm^{-1}$)를 관찰했고, Ru/Fe의 몰비 8/2 이하에서 두 적외선 흡수띠($1934.0{\sim}1990.2cm^{-1}$, $1625.7cm^{-1}$)를 관찰했다. $2138.7{\sim}2142.5cm^{-1}$ 흡수띠, $2067.3{\sim}2073.1cm^{-1}$ 흡수띠, $1976.7{\sim}2017.2cm^{-1}$흡수띠는 Ru/Fe 뭉치 표면의 Ru 원자에 선형결합한 CO의 신축진동에 의한 것으로, $1774.2{\sim}1799.3cm^{-1}$ 흡수띠는 Ru/Fe 뭉치 표면의 Ru 원자와 다리결합하거나 높은 지수 평면에 있는 Ru 원자에 결합한 CO의 신축진동에 의한 것으로, $1934.0{\sim}1990.2cm^{-1}$ 흡수띠는 Ru/Fe 뭉치 표면의 Fe 원자에 선형결합한 CO의 신축진동에 의한 것으로 제시할 수 있다. $Ru/Fe-SiO_2$에서 CO를 흡착시켰을 때 Ru/Fe 몰비가 8/2 이하에서 증가할 때 CO가 Fe에 선형결합하여 생긴 $1934.0{\sim}1990.2cm^{-1}$ 흡수띠의 흡광도가 증가하였는데, 이 현상은 Ru/Fe 몰비가 8/2 이하에서 증가할 때 Ru/Fe 뭉치 표면에서 시료의 함량과 비교하여 Fe 농도가 증가했고 $Fe-SiO_2$ 시료와 비교하여 표면적이 Ru/Fe 몰비의 증가에 따라 점차 증가했기 때문으로 설명할 수 있다.

Keywords

References

  1. R. B. Anderson, The Fischer-Tropsch Synthesis, Academic Press Inc. (1984)
  2. M. A. Vannice, Y. L. Lam, and R. L. Garten, Amer. Chem. Div. Petrol. Chem. Prepr., 23, 495 (1978)
  3. G. L. Ott, T. Fleisch, and W. N. Delgass, J. Catal., 60, 394 (1979) https://doi.org/10.1016/0021-9517(79)90164-7
  4. Y. J. Chabal, Surf. Sci. Rep., 8, 211 (1988) https://doi.org/10.1016/0167-5729(88)90011-8
  5. L. Lynds, Spectrochem. Acta, 20, 1369 (1964) https://doi.org/10.1016/0371-1951(64)80117-X
  6. G. U. Kulkami, K. R. Kannan, T. Arunakavjalli, and C. N. R. Rao, Adv. Catal. Des., Proc. Workshop, 2, 373 (1993)
  7. T. Sasaki, T. Aruga, and Y. Iwasawa, Surf. Sci., 291, 429 (1993) https://doi.org/10.1016/0039-6028(93)90460-2
  8. R. P. Eischens and W. A. Pliskin, Adv. Catal., 10, 1 (1958) https://doi.org/10.1016/S0360-0564(08)60403-4
  9. J. W. Cable and R. K. Sheline, Chem. Rev. 56, 1 (1956) https://doi.org/10.1021/cr50007a001
  10. J. W. Lee, S. Chang, H. Pak, K. J. Shin, M. Kim, and W. I. Chung, Bull. Korean Chem. Soc., 9, 137 (1988)
  11. G. Herzberg, Molecular Spectra and Molecular Structure. Volume I. Spectra of Diatomic Molecules, D. Van Nostrand Co, Inc.: Princeton, New Jersey (1950)
  12. M. Agnelli, H. M. Swann, C. Marquez-Alvarez, G. A. Martin, and C. Mirodatos, J. Catal., 175, 117 (1998) https://doi.org/10.1006/jcat.1998.1978
  13. G. Herzberg, Molecular Spectra and Molecular Structure. Volume Ⅱ. Infrared and Raman spectra of polyatomic molecules, D. Van Nostrand Co, New York, 281 (1945)
  14. R. A. Dalla Betta, J. Phys. Chem., 79, 2519 (1975) https://doi.org/10.1021/j100590a015
  15. H. Pnüer, D. Menzel, F. M. Hoffman, A. Ortega, and A. M. Bradshaw, Surf. Sci., 93, 431 (1980) https://doi.org/10.1016/0039-6028(80)90275-7
  16. K. L. Kostov, H. Rauscher, and D. Menzel, Surf. Sci., 278, 62 (1992) https://doi.org/10.1016/0039-6028(92)90584-S
  17. F. M. Hoffman and M. D. Weisel, Surf. Sci., 253, 59 (1988) https://doi.org/10.1016/0039-6028(91)90581-C
  18. M. F. Brown and R. D. Gonzalez, J. Phys. Chem., 80, 1731 (1976) https://doi.org/10.1021/j100556a017
  19. A. Schiffer, P. Jakob, and D. Menzel, Surf. Sci., 389, 116 (1997) https://doi.org/10.1016/S0039-6028(97)00402-0
  20. J. W. Cable and R. K. Sheline, Chem. Rev. 56, 1 (1956) https://doi.org/10.1021/cr50007a001
  21. G. Blyholder, J. Phys. Chem., 36, 2036 (1962) https://doi.org/10.1063/1.1732824
  22. R. P. Elliot, Constitution of binary alloys: First supplement. Mcgraw- Hill, St. Louis, 431 (1966)
  23. G. Wuff, C. Benson, and D. Patterson, J. Chem. Phys., 23, 670 (1955) https://doi.org/10.1063/1.1742074
  24. J. S. Ahn, K. S. Yoon, S. Y. Park, and S. K. Park, J. Kor. Chem. Soc., 53, 233 (2009) https://doi.org/10.5012/jkcs.2009.53.3.233
  25. U. Seip, M.-C. Tsai, K. Christmann, J. Kueppers, and G. Ertl, Surf. Sci., 160, 400 (1984) https://doi.org/10.1016/0039-6028(85)90783-6
  26. D. W. Moon, S. L. Bernas, D. J. Dwyer, and J. L. Gland, J. Am. Chem. Soc., 107, 4363 (1985) https://doi.org/10.1021/ja00300a064
  27. T. Wadayama, K. Kubo, T. Yamashita, T. Tanabe, and A. Hatta, J. Phys. Chem. B., 107, 3768 (2003) https://doi.org/10.1021/jp026212v
  28. G. Blyholder, J. Phys. Chem., 79, 756 (1975) https://doi.org/10.1021/j100574a018
  29. P. Hollins, Surf. Sci. Rep., 16, 51 (1992) https://doi.org/10.1016/0167-5729(92)90008-Y
  30. A. M. Bradshaw and F. M. Hoffman, Surf. Sci., 72, 513 (1978) https://doi.org/10.1016/0039-6028(78)90367-9