• 제목/요약/키워드: Signal Discretization

검색결과 9건 처리시간 0.022초

센서 데이터 변곡점에 따른 Time Segmentation 기반 항공기 엔진의 고장 패턴 추출 (Fault Pattern Extraction Via Adjustable Time Segmentation Considering Inflection Points of Sensor Signals for Aircraft Engine Monitoring)

  • 백수정
    • 산업경영시스템학회지
    • /
    • 제44권3호
    • /
    • pp.86-97
    • /
    • 2021
  • As mechatronic systems have various, complex functions and require high performance, automatic fault detection is necessary for secure operation in manufacturing processes. For conducting automatic and real-time fault detection in modern mechatronic systems, multiple sensor signals are collected by internet of things technologies. Since traditional statistical control charts or machine learning approaches show significant results with unified and solid density models under normal operating states but they have limitations with scattered signal models under normal states, many pattern extraction and matching approaches have been paid attention. Signal discretization-based pattern extraction methods are one of popular signal analyses, which reduce the size of the given datasets as much as possible as well as highlight significant and inherent signal behaviors. Since general pattern extraction methods are usually conducted with a fixed size of time segmentation, they can easily cut off significant behaviors, and consequently the performance of the extracted fault patterns will be reduced. In this regard, adjustable time segmentation is proposed to extract much meaningful fault patterns in multiple sensor signals. By considering inflection points of signals, we determine the optimal cut-points of time segments in each sensor signal. In addition, to clarify the inflection points, we apply Savitzky-golay filter to the original datasets. To validate and verify the performance of the proposed segmentation, the dataset collected from an aircraft engine (provided by NASA prognostics center) is used to fault pattern extraction. As a result, the proposed adjustable time segmentation shows better performance in fault pattern extraction.

초음파의 이산 주파수 합성을 이용한 거리 측정 (Distance Estimation Using Discretized Frequency Synthesis of Ultrasound Signals)

  • 박상욱;김대은
    • 제어로봇시스템학회논문지
    • /
    • 제17권5호
    • /
    • pp.499-504
    • /
    • 2011
  • In this paper, we suggest a method for discretized frequency modulations of ultrasonic signals. A continuous sweep of frequency modulation signals can be modelled with fine levels of discretization. If the ultrasound signals are modulated with monotonically decreasing frequencies, then the cross-correlation between an emitted signal and received signal can be used to identify the distance of multiple target objects. For the discretized frequency synthesis, CF ultrasounds with different frequencies are serially ordered. The auto-correlation test with the signal shows effective results for distance estimation. The discretized frequency syntheses have better distance resolution than CF ultrasound signals and the resolution depends on the number of the combined ultrasound frequencies.

러프집합분석을 이용한 매매시점 결정 (Rough Set Analysis for Stock Market Timing)

  • 허진영;김경재;한인구
    • 지능정보연구
    • /
    • 제16권3호
    • /
    • pp.77-97
    • /
    • 2010
  • 매매시점결정은 금융시장에서 초과수익을 얻기 위해 사용되는 투자전략이다. 일반적으로, 매매시점 결정은 거래를 통한 초과수익을 얻기 위해 언제 매매할 것인지를 결정하는 것을 의미한다. 몇몇 연구자들은 러프집합분석이 매매시점결정에 적합한 도구라고 주장하였는데, 그 이유는 이 분석방법이 통제함수를 이용하여 시장의 패턴이 불확실할 때에는 거래를 위한 신호를 생성하지 않는다는 점 때문이었다. 러프집합은 분석을 위해 범주형 데이터만을 이용하므로, 분석에 사용되는 데이터는 연속형의 수치값을 이산화하여야 한다. 이산화란 연속형 수치값의 범주화 구간을 결정하기 위한 적절한 "경계값"을 찾는 것이다. 각각의 구간 내에서의 모든 값은 같은 값으로 변환된다. 일반적으로, 러프집합 분석에서의 데이터 이산화 방법은 등분위 이산화, 전문가 지식에 의한 이산화, 최소 엔트로피 기준 이산화, Na$\ddot{i}$ve and Boolean reasoning 이산화 등의 네 가지로 구분된다. 등분위 이산화는 구간의 수를 고정하고 각 변수의 히스토그램을 확인한 후, 각각의 구간에 같은 숫자의 표본이 배정되도록 경계값을 결정한다. 전문가 지식에 의한 이산화는 전문가와의 인터뷰 또는 선행연구 조사를 통해 얻어진 해당 분야 전문가의 지식에 따라 경계값을 정한다. 최소 엔트로피 기준 이산화는 각 범주의 엔트로피 측정값이 최적화 되도록 각 변수의 값을 재귀분할 하는 방식으로 알고리즘을 진행한다. Na$\ddot{i}$ve and Boolean reasoning 이산화는 Na$\ddot{i}$ve scaling 후에 그로 인해 분할된 범주값을 Boolean reasoning 방법으로 종속변수 값에 대해 최적화된 이산화 경계값을 구하는 방법이다. 비록 러프집합분석이 매매시점결정에 유망할 것으로 판단되지만, 러프집합분석을 이용한 거래를 통한 성과에 미치는 여러 이산화 방법의 효과에 대한 연구는 거의 이루어지지 않았다. 본 연구에서는 러프집합분석을 이용한 주식시장 매매시점결정 모형을 구성함에 있어서 다양한 이산화 방법론을 비교할 것이다. 연구에 사용된 데이터는 1996년 5월부터 1998년 10월까지의 KOSPI 200데이터이다. KOSPI 200은 한국 주식시장에서 최초의 파생상품인 KOSPI 200 선물의 기저 지수이다. KOSPI 200은 제조업, 건설업, 통신업, 전기와 가스업, 유통과 서비스업, 금융업 등에서 유동성과 해당 산업 내의 위상 등을 기준으로 선택된 200개 주식으로 구성된 시장가치 가중지수이다. 표본의 총 개수는 660거래일이다. 또한, 본 연구에서는 유명한 기술적 지표를 독립변수로 사용한다. 실험 결과, 학습용 표본에서는 Na$\ddot{i}$ve and Boolean reasoning 이산화 방법이 가장 수익성이 높았으나, 검증용 표본에서는 전문가 지식에 의한 이산화가 가장 수익성이 높은 방법이었다. 또한, 전문가 지식에 의한 이산화가 학습용과 검증용 데이터 모두에서 안정적인 성과를 나타내었다. 본 연구에서는 러프집합분석과 의사결정 나무분석의 비교도 수행하였으며, 의사결정나무분석은 C4.5를 이용하였다. 실험결과, 전문가 지식에 의한 이산화를 이용한 러프집합분석이 C4.5보다 수익성이 높은 매매규칙을 생성하는 것으로 나타났다.

볼록거울 영상에서 일어나는 영상 겹침 극복을 위한 비선형적 디블러링 알고리즘 (Nonlinear Deblurring Algorithm on Convex-Mirror Image for Reducing Occlusion)

  • 이인정
    • 정보처리학회논문지A
    • /
    • 제13A권5호
    • /
    • pp.429-434
    • /
    • 2006
  • 볼록거울을 사용하여 CCTV시스템을 만들면 카메라 수를 줄이는 효과가 있다. 이 경우 볼록거울 영상은 횐 영상이므로 평면영상처럼 변환해야 한다. 이 경우에, 중앙에 비추인 영상은 평면 영상으로 변환 후에도 왜곡이 거의 없지만 거울의 테두리 부근에서 얻은 영상을 변환하면 왜곡이 심하게 나타나서 영상 내의 물체를 식별하기가 어려워진다. 이는 볼록거울의 특성으로, 입사각이 겹쳐지면서 생기는 영상 겹침이 일어나기 때문이다. 거기에다 먼 곳에서 오는 빛의 산란과 그로 인한 블러링이 영상을 왜곡 시키는 요인이 된다. 본 논문에서는 이러한 왜곡을 극복하기 위해 편이 등고선 확장 방법과 비선형 파동방정식의 후진대입 해를 이용하여 빛의 산란효과를 줄이는 방법을 제안한다. 보통의 선형적 방법으로는 주파수 영역에서 푸리에 변수가 겹치는 신호로부터 블러드 노이즈를 분리해 낼 수가 없음은 알려져 있다. 그러나 비선형 변분법적 공식을 사용하면 그 블러드 노이즈 제거에 큰 효과를 볼 수 있다. 본 논문의 제안요소는 이 변분법적 공식을 사용하기 전에 편이 등고선 확장정리를 사용하여 영상겹침을 줄이고 파동방정식을 사용하여 산란효과를 줄이는 방법을 사용하는 것이다. 제안 결과를 분석하기 위해 PSNR값을 조사하였더니 파동방정식을 사용한 결과가 사용하지 않은 기존결과에 비해 4dB정도 개선된 값을 보였다.

선형연속데이터형 제어계통의 플랜트와 디지털모델의 오차자승적분지표에 의한 최적디지탈제어기의 전달함수유도 (Deriviation of the z-transfer Function of Optimal Digital Controller Using an Integral-Square-Error Criterion with the continuous-data Model in Linear Control Systems)

  • Park, Kyung-Sam
    • 대한전기학회논문지
    • /
    • 제32권6호
    • /
    • pp.211-218
    • /
    • 1983
  • In this paper, an attempt is made to match the continuous state trajectory of the digital control system with that of its continuous data model. Matching the state trajectories instead of the output responses assures that the performances of the internal variables of the plant as well as the output variables are preserved in the discretization. The mathematical tool used in this research is an extended maximum principle of the Pontryagin type, which enables one to synthesize a staircase type of optimal control signals, such as the output signal of a zero-order hold asociated with a digital controller. A general mathematical expression of the digital controller which may be used to replace the analog controller of a general system while preserving as mauch as possible the performance characteristics of the original continuous-data control system is derived in this paper.

  • PDF

Atomic norm minimization을 통한 수중 방사 소음 신호의 토널 주파수 탐지 (Detection of tonal frequency of underwater radiated noise via atomic norm minimization)

  • 김준한;김진홍;심병효;홍정표;김성일;홍우영
    • 한국음향학회지
    • /
    • 제38권5호
    • /
    • pp.543-548
    • /
    • 2019
  • 수중 표적의 기어박스 및 보조 장치 등으로부터 방사되는 토널 신호의 주파수 성분은 처리하고자 하는 주파수 대역에 비해 상대적으로 적어 희소신호로 모델링될 수 있다. 근래에 토널 신호의 주파수 희소성을 이용하여 빠른 시간 내에 적은 수의 관측치로 토널 주파수를 복원하는 압축센싱 기반의 연구가 활발히 진행되고 있다. 기존의 방법들은 이산(discrete) 주파수 영역에서 주파수를 검출하기 때문에 이산화로 인한 basis mismatch error가 불가피하다. 본 논문에서는 atomic norm minimization을 이용하여 적은 수의 관측치로 연속(continuous) 주파수 영역에서 토널 주파수를 검출하는 기법을 제안한다. 모의실험을 통해 기존의 기법들에 비해 제안하는 기법의 성능이 정확성과 평균제곱오차 측면에서 우수함을 확인하였다.

효율적 유한요소 생성을 위한 미소 기하 특징 소거 (Geometric Detail Suppression for the Generation of Efficient Finite Elements)

  • 이용구;이건우
    • 한국CDE학회논문집
    • /
    • 제2권3호
    • /
    • pp.175-185
    • /
    • 1997
  • Given the widespread use of the Finite Element Method in strength analysis, automatic mesh generation is an important component in the computer-aided design of parts and assemblies. For a given resolution of geometric accuracy, the purpose of mesh generators is to discretize the continuous model of a part within this error limit. Sticking to this condition often produces many small elements around small features in spite that these regions are usually of little interest and computer resources are thus wasted. Therefore, it is desirable to selectively suppress small features from the model before discretization. This can be achieved by low-pass filtering a CAD model. A spatial function of one dimension higher than the model of interest is represented using the Fourier basis functions and the region where the function yields a value greater than a prescribed value is considered as the extent of a shape. Subsequently, the spatial function is low-pass filtered, yielding a shape without the small features. As an undesirable effect to this operation, all sharp corners are rounded. Preservation of sharp corners is important since stress concentrations might occur there. This is why the LPF (low-pass filtered) model can not be directly used. Instead, the distances of the boundary elements of the original shape from the LPF model are calculated and those that are far from the LPF model are identified and removed. It is shown that the number of mesh elements generated on the simplified model is much less than that of the original model.

  • PDF

희소한 부호 자리수 계수를 갖는 FIR 필터 설계 (Design of FIR Filters With Sparse Signed Digit Coefficients)

  • 김시현
    • 전기전자학회논문지
    • /
    • 제19권3호
    • /
    • pp.342-348
    • /
    • 2015
  • 광대역 통신 모뎀이나 초고해상도 비디오 코덱 등과 같이 높은 데이터율을 갖는 시스템을 하드웨어로 구현할 때에는 디지털 필터의 고속 구현이 필수적이다. 디지털 필터의 임계경로는 대부분 MAC (multiplication and accumulation) 연산 회로이므로 필터 계수의 0이 아닌 비트의 갯수가 희소하다면 하드웨어 비용이 적은 덧셈기로도 디지털 필터를 고속으로 구현할 수 있다. 압축센싱은 신호의 희소 표현이나 희소 신호의 복원에 우수한 성능을 보임이 최근 연구에서 보고되고 있다. 본 논문에서는 압축센싱에 기반한 디지털 FIR 필터의 CSD (canonic signed digit) 계수를 찾는 방법을 제안한다. 주어진 주파수 응답과의 오차를 최소하면서 탐욕적 방법으로 희소한 0이 아닌 부호자리수를 찾고 잘못 선택되었던 부호자리수는 제거하는 과정을 반복한다. 설계 예를 통해 제안된 방법으로 희소한 0이 아닌 CSD 계수의 FIR 필터를 설계할 수 있음을 보인다.

확률적 희소 신호 복원 알고리즘 개발 (Development of A Recovery Algorithm for Sparse Signals based on Probabilistic Decoding)

  • 성진택
    • 한국정보전자통신기술학회논문지
    • /
    • 제10권5호
    • /
    • pp.409-416
    • /
    • 2017
  • 본 논문은 유한체(finite fields)에서 압축센싱(compressed sensing) 프레임워크를 살펴본다. 하나의 측정 샘플은 센싱행렬의 행과 희소 신호 벡터와의 내적으로 연산되며, 본 논문에서 제안하는 확률적 희소 신호 복원 알고리즘을 이용하여 그 압축센싱의 해를 찾고자 한다. 지금까지 압축센싱은 실수(real-valued)나 복소수(complex-valued) 평면에서 주로 연구되어 왔지만, 이와 같은 원신호를 처리하는 경우 이산화 과정으로 정보의 손실이 뒤따르게 된다. 이에 대한 연구배경은 이산(discrete) 신호에 대한 희소 신호를 복원하고자 하는 노력으로 이어지고 있다. 본 연구에서 제안하는 프레임워크는 센싱행렬로써 코딩 이론에서 사용된 LDPC(Low-Density Parity-Check) 코드의 패러티체크 행렬을 이용한다. 그리고 본 연구에서 제안한 확률적 복원 알고리즘을 이용하여 유한체의 희소 신호를 복원한다. 기존의 코딩 이론에서 발표한 LDPC 복호화와는 달리 본 논문에서는 희소 신호의 확률분포를 이용한 반복적 알고리즘을 제안한다. 그리고 개발된 복원 알고리즘을 통하여 우리는 유한체의 크기가 커질수록 복원 성능이 우수한 결과를 얻었다. 압축센싱의 센싱행렬이 LDPC 패러티체크 행렬과 같은 저밀도 행렬에서도 좋은 성능을 보여줌에 따라 이산 신호를 고려한 응용 분야에서 적극적으로 활용될 것으로 기대된다.