As mechatronic systems have various, complex functions and require high performance, automatic fault detection is necessary for secure operation in manufacturing processes. For conducting automatic and real-time fault detection in modern mechatronic systems, multiple sensor signals are collected by internet of things technologies. Since traditional statistical control charts or machine learning approaches show significant results with unified and solid density models under normal operating states but they have limitations with scattered signal models under normal states, many pattern extraction and matching approaches have been paid attention. Signal discretization-based pattern extraction methods are one of popular signal analyses, which reduce the size of the given datasets as much as possible as well as highlight significant and inherent signal behaviors. Since general pattern extraction methods are usually conducted with a fixed size of time segmentation, they can easily cut off significant behaviors, and consequently the performance of the extracted fault patterns will be reduced. In this regard, adjustable time segmentation is proposed to extract much meaningful fault patterns in multiple sensor signals. By considering inflection points of signals, we determine the optimal cut-points of time segments in each sensor signal. In addition, to clarify the inflection points, we apply Savitzky-golay filter to the original datasets. To validate and verify the performance of the proposed segmentation, the dataset collected from an aircraft engine (provided by NASA prognostics center) is used to fault pattern extraction. As a result, the proposed adjustable time segmentation shows better performance in fault pattern extraction.
In this paper, we suggest a method for discretized frequency modulations of ultrasonic signals. A continuous sweep of frequency modulation signals can be modelled with fine levels of discretization. If the ultrasound signals are modulated with monotonically decreasing frequencies, then the cross-correlation between an emitted signal and received signal can be used to identify the distance of multiple target objects. For the discretized frequency synthesis, CF ultrasounds with different frequencies are serially ordered. The auto-correlation test with the signal shows effective results for distance estimation. The discretized frequency syntheses have better distance resolution than CF ultrasound signals and the resolution depends on the number of the combined ultrasound frequencies.
매매시점결정은 금융시장에서 초과수익을 얻기 위해 사용되는 투자전략이다. 일반적으로, 매매시점 결정은 거래를 통한 초과수익을 얻기 위해 언제 매매할 것인지를 결정하는 것을 의미한다. 몇몇 연구자들은 러프집합분석이 매매시점결정에 적합한 도구라고 주장하였는데, 그 이유는 이 분석방법이 통제함수를 이용하여 시장의 패턴이 불확실할 때에는 거래를 위한 신호를 생성하지 않는다는 점 때문이었다. 러프집합은 분석을 위해 범주형 데이터만을 이용하므로, 분석에 사용되는 데이터는 연속형의 수치값을 이산화하여야 한다. 이산화란 연속형 수치값의 범주화 구간을 결정하기 위한 적절한 "경계값"을 찾는 것이다. 각각의 구간 내에서의 모든 값은 같은 값으로 변환된다. 일반적으로, 러프집합 분석에서의 데이터 이산화 방법은 등분위 이산화, 전문가 지식에 의한 이산화, 최소 엔트로피 기준 이산화, Na$\ddot{i}$ve and Boolean reasoning 이산화 등의 네 가지로 구분된다. 등분위 이산화는 구간의 수를 고정하고 각 변수의 히스토그램을 확인한 후, 각각의 구간에 같은 숫자의 표본이 배정되도록 경계값을 결정한다. 전문가 지식에 의한 이산화는 전문가와의 인터뷰 또는 선행연구 조사를 통해 얻어진 해당 분야 전문가의 지식에 따라 경계값을 정한다. 최소 엔트로피 기준 이산화는 각 범주의 엔트로피 측정값이 최적화 되도록 각 변수의 값을 재귀분할 하는 방식으로 알고리즘을 진행한다. Na$\ddot{i}$ve and Boolean reasoning 이산화는 Na$\ddot{i}$ve scaling 후에 그로 인해 분할된 범주값을 Boolean reasoning 방법으로 종속변수 값에 대해 최적화된 이산화 경계값을 구하는 방법이다. 비록 러프집합분석이 매매시점결정에 유망할 것으로 판단되지만, 러프집합분석을 이용한 거래를 통한 성과에 미치는 여러 이산화 방법의 효과에 대한 연구는 거의 이루어지지 않았다. 본 연구에서는 러프집합분석을 이용한 주식시장 매매시점결정 모형을 구성함에 있어서 다양한 이산화 방법론을 비교할 것이다. 연구에 사용된 데이터는 1996년 5월부터 1998년 10월까지의 KOSPI 200데이터이다. KOSPI 200은 한국 주식시장에서 최초의 파생상품인 KOSPI 200 선물의 기저 지수이다. KOSPI 200은 제조업, 건설업, 통신업, 전기와 가스업, 유통과 서비스업, 금융업 등에서 유동성과 해당 산업 내의 위상 등을 기준으로 선택된 200개 주식으로 구성된 시장가치 가중지수이다. 표본의 총 개수는 660거래일이다. 또한, 본 연구에서는 유명한 기술적 지표를 독립변수로 사용한다. 실험 결과, 학습용 표본에서는 Na$\ddot{i}$ve and Boolean reasoning 이산화 방법이 가장 수익성이 높았으나, 검증용 표본에서는 전문가 지식에 의한 이산화가 가장 수익성이 높은 방법이었다. 또한, 전문가 지식에 의한 이산화가 학습용과 검증용 데이터 모두에서 안정적인 성과를 나타내었다. 본 연구에서는 러프집합분석과 의사결정 나무분석의 비교도 수행하였으며, 의사결정나무분석은 C4.5를 이용하였다. 실험결과, 전문가 지식에 의한 이산화를 이용한 러프집합분석이 C4.5보다 수익성이 높은 매매규칙을 생성하는 것으로 나타났다.
볼록거울을 사용하여 CCTV시스템을 만들면 카메라 수를 줄이는 효과가 있다. 이 경우 볼록거울 영상은 횐 영상이므로 평면영상처럼 변환해야 한다. 이 경우에, 중앙에 비추인 영상은 평면 영상으로 변환 후에도 왜곡이 거의 없지만 거울의 테두리 부근에서 얻은 영상을 변환하면 왜곡이 심하게 나타나서 영상 내의 물체를 식별하기가 어려워진다. 이는 볼록거울의 특성으로, 입사각이 겹쳐지면서 생기는 영상 겹침이 일어나기 때문이다. 거기에다 먼 곳에서 오는 빛의 산란과 그로 인한 블러링이 영상을 왜곡 시키는 요인이 된다. 본 논문에서는 이러한 왜곡을 극복하기 위해 편이 등고선 확장 방법과 비선형 파동방정식의 후진대입 해를 이용하여 빛의 산란효과를 줄이는 방법을 제안한다. 보통의 선형적 방법으로는 주파수 영역에서 푸리에 변수가 겹치는 신호로부터 블러드 노이즈를 분리해 낼 수가 없음은 알려져 있다. 그러나 비선형 변분법적 공식을 사용하면 그 블러드 노이즈 제거에 큰 효과를 볼 수 있다. 본 논문의 제안요소는 이 변분법적 공식을 사용하기 전에 편이 등고선 확장정리를 사용하여 영상겹침을 줄이고 파동방정식을 사용하여 산란효과를 줄이는 방법을 사용하는 것이다. 제안 결과를 분석하기 위해 PSNR값을 조사하였더니 파동방정식을 사용한 결과가 사용하지 않은 기존결과에 비해 4dB정도 개선된 값을 보였다.
In this paper, an attempt is made to match the continuous state trajectory of the digital control system with that of its continuous data model. Matching the state trajectories instead of the output responses assures that the performances of the internal variables of the plant as well as the output variables are preserved in the discretization. The mathematical tool used in this research is an extended maximum principle of the Pontryagin type, which enables one to synthesize a staircase type of optimal control signals, such as the output signal of a zero-order hold asociated with a digital controller. A general mathematical expression of the digital controller which may be used to replace the analog controller of a general system while preserving as mauch as possible the performance characteristics of the original continuous-data control system is derived in this paper.
수중 표적의 기어박스 및 보조 장치 등으로부터 방사되는 토널 신호의 주파수 성분은 처리하고자 하는 주파수 대역에 비해 상대적으로 적어 희소신호로 모델링될 수 있다. 근래에 토널 신호의 주파수 희소성을 이용하여 빠른 시간 내에 적은 수의 관측치로 토널 주파수를 복원하는 압축센싱 기반의 연구가 활발히 진행되고 있다. 기존의 방법들은 이산(discrete) 주파수 영역에서 주파수를 검출하기 때문에 이산화로 인한 basis mismatch error가 불가피하다. 본 논문에서는 atomic norm minimization을 이용하여 적은 수의 관측치로 연속(continuous) 주파수 영역에서 토널 주파수를 검출하는 기법을 제안한다. 모의실험을 통해 기존의 기법들에 비해 제안하는 기법의 성능이 정확성과 평균제곱오차 측면에서 우수함을 확인하였다.
Given the widespread use of the Finite Element Method in strength analysis, automatic mesh generation is an important component in the computer-aided design of parts and assemblies. For a given resolution of geometric accuracy, the purpose of mesh generators is to discretize the continuous model of a part within this error limit. Sticking to this condition often produces many small elements around small features in spite that these regions are usually of little interest and computer resources are thus wasted. Therefore, it is desirable to selectively suppress small features from the model before discretization. This can be achieved by low-pass filtering a CAD model. A spatial function of one dimension higher than the model of interest is represented using the Fourier basis functions and the region where the function yields a value greater than a prescribed value is considered as the extent of a shape. Subsequently, the spatial function is low-pass filtered, yielding a shape without the small features. As an undesirable effect to this operation, all sharp corners are rounded. Preservation of sharp corners is important since stress concentrations might occur there. This is why the LPF (low-pass filtered) model can not be directly used. Instead, the distances of the boundary elements of the original shape from the LPF model are calculated and those that are far from the LPF model are identified and removed. It is shown that the number of mesh elements generated on the simplified model is much less than that of the original model.
광대역 통신 모뎀이나 초고해상도 비디오 코덱 등과 같이 높은 데이터율을 갖는 시스템을 하드웨어로 구현할 때에는 디지털 필터의 고속 구현이 필수적이다. 디지털 필터의 임계경로는 대부분 MAC (multiplication and accumulation) 연산 회로이므로 필터 계수의 0이 아닌 비트의 갯수가 희소하다면 하드웨어 비용이 적은 덧셈기로도 디지털 필터를 고속으로 구현할 수 있다. 압축센싱은 신호의 희소 표현이나 희소 신호의 복원에 우수한 성능을 보임이 최근 연구에서 보고되고 있다. 본 논문에서는 압축센싱에 기반한 디지털 FIR 필터의 CSD (canonic signed digit) 계수를 찾는 방법을 제안한다. 주어진 주파수 응답과의 오차를 최소하면서 탐욕적 방법으로 희소한 0이 아닌 부호자리수를 찾고 잘못 선택되었던 부호자리수는 제거하는 과정을 반복한다. 설계 예를 통해 제안된 방법으로 희소한 0이 아닌 CSD 계수의 FIR 필터를 설계할 수 있음을 보인다.
본 논문은 유한체(finite fields)에서 압축센싱(compressed sensing) 프레임워크를 살펴본다. 하나의 측정 샘플은 센싱행렬의 행과 희소 신호 벡터와의 내적으로 연산되며, 본 논문에서 제안하는 확률적 희소 신호 복원 알고리즘을 이용하여 그 압축센싱의 해를 찾고자 한다. 지금까지 압축센싱은 실수(real-valued)나 복소수(complex-valued) 평면에서 주로 연구되어 왔지만, 이와 같은 원신호를 처리하는 경우 이산화 과정으로 정보의 손실이 뒤따르게 된다. 이에 대한 연구배경은 이산(discrete) 신호에 대한 희소 신호를 복원하고자 하는 노력으로 이어지고 있다. 본 연구에서 제안하는 프레임워크는 센싱행렬로써 코딩 이론에서 사용된 LDPC(Low-Density Parity-Check) 코드의 패러티체크 행렬을 이용한다. 그리고 본 연구에서 제안한 확률적 복원 알고리즘을 이용하여 유한체의 희소 신호를 복원한다. 기존의 코딩 이론에서 발표한 LDPC 복호화와는 달리 본 논문에서는 희소 신호의 확률분포를 이용한 반복적 알고리즘을 제안한다. 그리고 개발된 복원 알고리즘을 통하여 우리는 유한체의 크기가 커질수록 복원 성능이 우수한 결과를 얻었다. 압축센싱의 센싱행렬이 LDPC 패러티체크 행렬과 같은 저밀도 행렬에서도 좋은 성능을 보여줌에 따라 이산 신호를 고려한 응용 분야에서 적극적으로 활용될 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.