• Title/Summary/Keyword: Signal Direction

Search Result 977, Processing Time 0.047 seconds

2-Dimensional Fluxgate Sensor using Ferrite Ring Core (페라이트 링코어를 이용한 2차원 Fluxgate 센서)

  • 임재환;박한석;안영주;김남호;류지구
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.251-255
    • /
    • 2003
  • In this paper, we have a fluxgate sensor with ferrite core. Thought sensor is consist of one excitation coil and two pick-up coil, and A lock-in amplifier circuity is designed for Signal processing of picking up 2nd harmonics from pick-up coils. Excitation coils is turned by 20 turns, and pick-up coil for picking up harmonics is turned by 40 turns eachother. It convert 2nd harmonics to DC output voltage. Measured output voltage and sensitivity, direction of sensor about out side magnetic field, and also sensor output properties about excitation frequency and current.

  • PDF

Design of IIR Loop Filter to minimize A flick Phenomenon of An image (영상의 깜박거림 현상을 최소화하기 위한 순환 루프 필터의 설계)

  • O. Moon;Lee, B.;Lee, H.;Lee, Y.;B. Kang;C. Hong
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.165-168
    • /
    • 2000
  • In this paper, we propose a method, an optimized architecture of a device with an image signal process of a field unit to minimize the flick phenomenon that happens in direction of a color temperature at a color tone change. The proposed IIR loop filter has an optimized architecture and reduced hardware compared with previous filters. In order to achieve the optimization for the hardware complexity. It is designed by time-multiplexing architecture. The proposed IIR loop filter is synthesized by using the STD90 0.35um cell library.

  • PDF

Signal Pattern Analysis of Ground Penetrating Radar for Detecting Road Cavities (도로동공 탐지를 위한 지표투과레이더의 신호패턴에 관한 연구)

  • Yoon, Jin-Sung;Baek, Jongeun;Choi, Yeon Woo;Choi, Hyeon;Lee, Chang Min
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.61-67
    • /
    • 2016
  • OBJECTIVES : The objective of this study is to detect road cavities using multi-channel 3D ground penetrating radar (GPR) tests owned by the Seoul Metropolitan Government. METHODS : Ground-penetrating radar tests were conducted on 204 road-cavity test sections, and the GPR signal patterns were analyzed to classify signal shape, amplitude, and phase change. RESULTS : The shapes of the GPR signals of road-cavity sections were circular or ellipsoidal in the plane image of the 3D GPR results. However, in the longitudinal or transverse direction, the signals showed mostly unsymmetrical (or symmetrical in some cases) parabolic shapes. The amplitude of the GPR signals reflected from road cavities was stronger than that from other media. No particular pattern of the amplitude was found because of nonuniform medium and utilities nearby. In many cases where road cavities extended to the bottom of the asphalt concrete layer, the signal phase was reversed. However, no reversed signal was found in subbase, subgrade, or deeper locations. CONCLUSIONS : For detecting road cavities, the results of the GPR signal-pattern analysis can be applied. In general, GPR signals on road cavity-sections had unsymmetrical hyperbolic shape, relatively stronger amplitude, and reversed phase. Owing to the uncertainties of underground materials, utilities, and road cavities, GPR signal interpretation was difficult. To perform quantitative analysis for road cavity detection, additional GPR tests and signal pattern analysis need to be conducted.

Development and Application of BLE-Based Audible Pedestrian Signal (APS) for Intersection Safety Crossing of Blind People (시각장애인의 교차로 안전횡단 지원 BLE 기반 음향신호기 개발 및 현장 적용사례)

  • Kim, Hyoung Sun;Kim, Ju Wan;Jang, In Sung
    • Journal of Information Technology Services
    • /
    • v.16 no.4
    • /
    • pp.223-234
    • /
    • 2017
  • The audible pedestrian signal (APS) is an add-on device which connects to the pedestrian signaling device and informs the contents and changes of the signaling by sound. It provides walking direction information of the pedestrian crossing so that the blind people can safely cross the pedestrian crossing. In an intersection where a plurality of audible pedestrian signal (APS) are installed at an intersection crosswalk, existing audible pedestrian signal (APS) operate simultaneously in the communication radius of a wireless remote controller, which may cause confusion for the blind people and the public may complain about the noise. In this paper, we developed a BLE (Bluetooth Low Energy)-based audible pedestrian signal (APS) system capable of supporting two-way communications with a smart-phone that can cross the intersection safely and improve the walking comfort and traffic safety for the blind people. The proposed method is a method in which the BLE beacon communication based audible pedestrian signal (APS) presents active service to the blind people, and the existing audible pedestrian signal (APS) is a way of requesting the passive service by the blind people with the wireless remote control by the unidirectional communication based on 358Mhz. The developed system is installed in the crossroad of Doma-dong, Seo-gu, Daejeon, and it is tested and operated by the blind people. The satisfaction evaluation and analysis of the audible pedestrian signal (APS) for the blind people have good results and are planned to be expanded in the future.

Design of the Satellite Beacon Receiver Using Array Based Digital Filter (다중배열 디지털필터를 이용한 위성비콘 수신기 설계)

  • Lee, Kyung-Soon;Koo, Kyung-Heon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.10
    • /
    • pp.909-916
    • /
    • 2016
  • The beacon receiver is an equipment which detects and measures the signal strength of transmitting satellite beacon signal. Beacon signals transmitted by satellites are low power continuous wave(CW) signals without any modulation intended for antenna steering to satellite direction and power control purposes on the earth. The beacon signal detection method using a very narrow band analog filter and RSSI(Received Signal Strength Intensity) has been typically used. However, it requires the implementation to track the frequency at the beacon receiver, thus a beacon frequency variation of the satellite due to temperature changes and long-term operation. Therefore, in this paper, the beacon signal detection receiver is designed by using a very narrow band digital filter array for a faster acquisition and SNR(Signal to Noise Ratio) method detection. For this purpose, by calculating the satellite link budget with the rain attenuation between satellite and ground station, and then extracting the received $C/N_o$ of the beacon signal, this work derives the bandwidth and the array number of the configured digital filter that gives the required C/N.

Extended Edge Based Line Averaging Method for Deinterlacing (확장된 에지기반 라인평균 방법의 디인터레이싱 응용)

  • Min Byong seok;Kim Seung jong;Cho Dong uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.223-229
    • /
    • 2005
  • In this paper, we proposed an extended edge-based line averaging method for deinterlacing with restricted search range. Conversion from interlaced signal to non-interlaced signal is one of important issues. Conventional deinterlacing algorithms usually utilize edge-based line average algorithm(ELA) within pixel-by-pixel approach. However, it is very sensitive to noise and variation of intensity. To reduce the sensitivity, the proposed method adopts a block-by-block approach and provides reliable direction of edge. Simulation results show that it provides a better performance than other pixel-by-pixel ELA-based methods.

Effects of Tropospheric Mapping Functions on GPS Data Processing

  • Won, Ji-Hye;Park, Kwan-Dong;Ha, Ji-Hyun;Cho, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.1
    • /
    • pp.21-30
    • /
    • 2010
  • In processing space geodetic data, mapping functions are used to convert the tropospheric signal delay along the zenith direction to the line of sight direction. In this study, we compared three mapping functions by evaluating their effects on the tropospheric signal delay and position estimates in GPS data processing. The three mapping functions tested are Niell Mapping Function (NMF), Vienna Mapping Function 1 (VMF1), and Global Mapping Function (GMF). The tropospheric delay and height estimates from VMF1 and GMF are compared with the ones obtained with NMF. The differences among mapping functions show annual signals with the maximum occurring in February or August. To quantitatively estimate the discrepancies among mapping functions, we calculated the maximum difference and the amplitude using a curve fitting technique. Both the maximum difference and amplitude have high correlations with the latitude of the site. Also, the smallest difference was found around $30^{\circ}N$ and the amplitudes increase toward higher latitudes. In the height estimates, the choice of mapping function did not significantly affect the vertical velocity estimate, and the precision of height estimates was improved at most of the sites when VMF1 or GMF was used instead of NMF.

Compressive Sensing for MIMO Radar Systems with Uniform Linear Arrays (균일한 선형 배열의 다중 입출력 레이더 시스템을 위한 압축 센싱)

  • Lim, Jong-Tae;Yoo, Do-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.80-86
    • /
    • 2010
  • Compressive Sensing (CS) has been widely studied as a promising technique in many applications. The CS theory tells that a signal that is known to be sparse in a specific basis can be reconstructed using convex optimization from far fewer samples than traditional methods use. In this paper, we apply CS technique to Multiple-input multiple-output (MIMO) radar systems which employ uniform linear arrays (ULA). Especially, we investigate the problem of finding the direction-of-arrival (DOA) using CS technique and compare the performance with the conventional adaptive MIMO techniques. The results suggest the CS method can provide the similar performance with far fewer snapshots than the conventional adaptive techniques.

High-Resolution Algorithm for Direction Finding of Multiple Incoherent Plane Waves (다중 인코히어런트 평면파의 도래각 추정을 위한 고분해능 알고리즘)

  • 김영수;이성윤
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.9A
    • /
    • pp.1322-1328
    • /
    • 1999
  • In this paper, we propose a Multiple Signal Classification(MUSIC) in conjunction with signal enhancement (SE-MUSIC) for solving the direction-of-arrival estimation problem of multiple incoherent plane waves incident on a uniform linear array. The proposed SE-MUSIC algorithms involve the following main two-step procedure : ( i )to find the enhanced matrix that possesses the prescribed properties and which lies closest to a given covariance matrix estimate in the Frobenius norm sense and (ii) to apply the MUSIC to the enhanced matrix. Simulation results are illustrated to demonstrate the better resolution and statistical performance of the proposed method than MUSIC at lower SNR.

  • PDF

Computer Simulation of Sensing Current Effects on the Magnetic and Magnetoresistance Properties of a Crossed Spin-Valve Read

  • Lim, S.H;Han, S.H;Shin, K.H;Kim, H.J
    • Journal of Magnetics
    • /
    • v.5 no.2
    • /
    • pp.44-49
    • /
    • 2000
  • Computer simulation of sensing current effects on the magnetic and magnetoresistance properties of a crossed spin-valve head is carried out. The spin-valve head has the following layer structure: Ta (8.0 nm)/NiMn (25 nm)/NiFe (2.5 nm)/Cu (3.0 nm)/NiFe (5.5 nm)/Ta (3.0 nm), and it is 1500 nm long and 600 nm wide. Even with a high pinning field of 300 Oe and a high hard-biased field of 50 Oe, the ideal crossed spin-valve structure, which is essential to the symmetry of the output signal and hence high density recording, is not realized mainly due to large interlayer magnetostatic interactions. This problem is solved by applying a suitable magnitude of sensing currents along the length direction generating magnetic fields in the width direction. The ideal spin-valve head is expected to show good symmetry of the output signal. This has not been shown explicitly in the present simulation, however, The reason for this is possibly related to the simple assumption used in this calculation that each magnetic layer consists of a single domain.

  • PDF