• 제목/요약/키워드: Sigma Space

검색결과 353건 처리시간 0.026초

Time and Space Efficient Search with Suffix Arrays (접미사 배열을 이용한 시간과 공간 효율적인 검색)

  • Choi, Yong-Wook;Sim, Jeong-Seop;Park, Kun-Soo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • 제32권5호
    • /
    • pp.260-267
    • /
    • 2005
  • To search efficiently a text T of length n for a pattern P over an alphabet 5, suffix trees and suffix arrays are widely used. In case of a large text, suffix arrays are preferred to suffix trees because suffix ways take less space than suffix trees. Recently, O(${\mid}P{\mid}{\codt}{\mid}{\Sigma}{\mid}$-time and O(${\mid}P{\mid}P{\cdot}log{\mid}{\Sigma}{\mid}$)-time search algorithms in suffix ways were developed. In this paper we present time and space efficient search algorithms in suffix arrays. One algorithm runs in O(${\mid}P{\mid}$) time using O($n{\cdot}{\mid}{\Sigma}{\mid}$)-bits space, and the other runs in O($n{\cdot}{\mid}{\Sigma}{\mid}$ time using O($nlog{\mid}{\Sigma}{\mid}+{\mid}{\Sigma}{\mid}{\cdot}$nlog log n/logn)-bits space, which is more space efficient and still fast. Experiments show that our algorithms are efficient in both time and space when compared to previous algorithms.

BASICALLY DISCONNECTED SPACES AND PROJECTIVE OBJECTS

  • Kim, Chang-Il
    • The Pure and Applied Mathematics
    • /
    • 제9권1호
    • /
    • pp.9-17
    • /
    • 2002
  • In this Paper, we will show that every basically disconnected space is a projective object in the category $Tych_{\sigma}$ of Tychonoff spaces and $_{\sigma}Z^{#}$ -irreducible maps and that if X is a space such that ${\Beta} {\Lambda} X={\Lambda} {\Beta} X$, then X has a projective cover in $Tych_{\sigma}$. Moreover, observing that for any weakly Linde1of space, ${\Lambda} X : {\Lambda} X\;{\longrightarrow}\;X$ is $_{\sigma}Z^{#}$-irreducible, we will show that the projective objects in $wLind_{\sigma}$/ of weakly Lindelof spaces and $_{\sigma}Z^{#}$-irreducible maps are precisely the basically disconnected spaces.

  • PDF

GENERALIZED BROWDER, WEYL SPECTRA AND THE POLAROID PROPERTY UNDER COMPACT PERTURBATIONS

  • Duggal, Bhaggy P.;Kim, In Hyoun
    • Journal of the Korean Mathematical Society
    • /
    • 제54권1호
    • /
    • pp.281-302
    • /
    • 2017
  • For a Banach space operator $A{\in}B(\mathcal{X})$, let ${\sigma}(A)$, ${\sigma}_a(A)$, ${\sigma}_w(A)$ and ${\sigma}_{aw}(A)$ denote, respectively, its spectrum, approximate point spectrum, Weyl spectrum and approximate Weyl spectrum. The operator A is polaroid (resp., left polaroid), if the points $iso{\sigma}(A)$ (resp., $iso{\sigma}_a(A)$) are poles (resp., left poles) of the resolvent of A. Perturbation by compact operators preserves neither SVEP, the single-valued extension property, nor the polaroid or left polaroid properties. Given an $A{\in}B(\mathcal{X})$, we prove that a sufficient condition for: (i) A+K to have SVEP on the complement of ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) for every compact operator $K{\in}B(\mathcal{X})$ is that ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) has no holes; (ii) A + K to be polaroid (resp., left polaroid) for every compact operator $K{\in}B(\mathcal{X})$ is that iso${\sigma}_w(A)$ = ∅ (resp., $iso{\sigma}_{aw}(A)$ = ∅). It is seen that these conditions are also necessary in the case in which the Banach space $\mathcal{X}$ is a Hilbert space.

Fundamental Groups of a Topological Transformation Group

  • Chu, Chin-Ku;Choi, Sung Kyu
    • Journal of the Chungcheong Mathematical Society
    • /
    • 제4권1호
    • /
    • pp.103-113
    • /
    • 1991
  • Some properties of a path space and the fundamental group ${\sigma}(X,x_0,G)$ of a topological transformation group (X, G, ${\pi}$) are described. It is shown that ${\sigma}(X,x_0,H)$ is a normal subgroup of ${\sigma}(X,x_0,G)$ if H is a normal subgroup of G ; Let (X, G, ${\pi}$) be a transformation group with the open action property. If every identification map $p:{\Sigma}(X,x,G)\;{\longrightarrow}\;{\sigma}(X,x,G)$ is open for each $x{\in}X$, then ${\lambda}$ induces a homeomorphism between the fundamental groups ${\sigma}(X,x_0,G)$ and ${\sigma}(X,y_0,G)$ where ${\lambda}$ is a path from $x_0$ to $y_0$ in X ; The space ${\sigma}(X,x_0,G)$ is an H-space if the identification map $p:{\Sigma}(X,x_0,G)\;{\longrightarrow}\;{\sigma}(X,x_0,G)$ is open in a topological transformation group (X, G, ${\pi}$).

  • PDF

Development of Flight Software for SIGMA CubeSat (SIGMA 큐브위성의 비행 소프트웨어 개발)

  • Lee, Jeongho;Lee, Seongwhan;Lee, JungKyu;Lee, Hyojeong;Shin, Jehyuck;Jeong, Seonyeong;Oh, YoungSeok;Jin, Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제44권4호
    • /
    • pp.363-372
    • /
    • 2016
  • SIGMA(Scientific cubesat with Instruments for Global Magnetic field and rAdiation) CubeSat has been developed for magnetic field measurement of the Earth and space radiation measurement at Kyung Hee university. The flight software plays important roles in controlling the satellite and processing the data in the space mission. In this paper, the Flight Software has been implemented to process all the tasks in the one thread without RTOS(Real Time Operating System). This is an effective mothed not only to concentrate the space mission of CubeSat but also to reduce the overhead of the Flight Software by considering the mission perform procedures and the system control methods.

Performance Test for the SIGMA Communication System

  • Jeong, Seonyeong;Lee, Hyojeong;Lee, Seongwhan;Shin, Jehyuck;Lee, Jungkyu;Jin, Ho
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권4호
    • /
    • pp.335-344
    • /
    • 2016
  • Scientific CubeSat with Instruments for Global Magnetic Fields and Radiations (SIGMA) is a 3-U size CubeSat that will be operated in low earth orbit (LEO). The SIGMA communication system uses a very high frequency (VHF) band for uplink and an ultra high frequency (UHF) band for downlink. Both frequencies belong to an amateur band. The ground station that communicates with SIGMA is located at Kyung Hee Astronomical Observatory (KHAO). For reliable communication, we carried out a laboratory (LAB) test and far-field tests between the CubeSat and a ground station. In the field test, we considered test parameters such as attenuation, antenna deployment, CubeSat body attitude, and Doppler frequency shift in transmitting commands and receiving data. In this paper, we present a communication performance test of SIGMA, a link budget analysis, and a field test process. We also compare the link budget with the field test results of transmitting commands and receiving data.

A NOTE ON G-VECTOR BUNDLES

  • KIM, YANG-KON
    • Honam Mathematical Journal
    • /
    • 제2권1호
    • /
    • pp.37-44
    • /
    • 1980
  • 우리는 먼저 Principal G-bundle와 성질을 살피고 representation of G over C를 irreducible CG-space의 direct sum으로 표시하여 Schur's Lemma를 이용하면 E가 임의의 CG-space, ${\sigma}E=Hom_c(E{\sigma},E)$라 할 때 ${\oplus}_{\sigma}(E_{\sigma}{\otimes}{\sigma}E){\rightarrow}E$ 가 G-ismorphism이 됨을 알아본다. 본 논문의 목적은 이러한 결과를 이용하여 K(X)와 $K_G(X)$의 관계를 구명하는데 있다.

  • PDF

System Design of SIGMA(KHUSAT-3) CubeSat Mission

  • Lee, Seongwhan;Lee, Junkyu;Kum, Kanghoon;Lee, Hyojeong;Seo, Junwon;Shin, Youra;Jeong, Seonyoung;Shin, Jehyuck;Cheon, Junghoon;Kim, Hanjun;Jin, Ho;Nam, Uk-Won;Kim, Sunghwan;Lee, Regina;Lessard, Marc R.
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제39권1호
    • /
    • pp.54.1-54.1
    • /
    • 2014
  • Kyung Hee University has been developing a CubeSat for the space science mission called SIGMA (Scientific cubesat with Instrument for Global Magnetic field and rAdiation), which includes TEPC (Tissue Equivalent Proportional Counter) and a magnetometer. SIGMA has a 3-unit CubeSat, and the weight is about 3.2 kg. The main payload is TEPC which can measure the Linear Energy Transfer (LET) spectrum and calculate the equivalent dose for the complicated radiation field in the space. The magnetometer is a secondary payload using a miniaturized fluxgate magnetometer. We expect it to have a 1 nT resolution in the dynamic range of ${\pm}65535$ nT. An Attitude Control System (ACS) spins the SIGMA spacecraft 4 rpm with the spin axis perpendicular to the ecliptic plane. Full duplex communication is consists of VHF uplink and S-band and UHF downlink. In this paper, we introduce the system design and the scientific purpose of the SIGMA CubeSat mission.

  • PDF