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LOCAL EXISTENCE OF CHERN-SIMONS GAUGED O(3)

SIGMA EQUATIONS

Xueyan Zheng

Abstract. In this paper we study the Cauchy problem for the Chern-

Simons gaugedO(3) sigma model. We prove the local existence of solutions

with low regularity initial data, observing null forms of the system and
applying bilinear estimates for wave-Sobolev space Hs, b.

1. Introduction

The classical O(3) sigma model originates from the description of the planar
ferromagnet. The O(3) sigma model in 2-dimensional Euclidean space is a pop-
ular one in theoretical physics. From the point of view of a particle physicist,
the model has one important drawback: it is scale invariant and as a result its
soliton solutions have arbitrary size, making them unsuitable as models for par-
ticles. The new possibilities of breaking the scale invariance of the sigma model
were proposed by introducing a U(1) gauge field whose dynamics is governed
by Maxwell, Chern-Simons and Maxwell-Chern-Simons action. Some analysis
of the self-dual equations can be found in [1, 6].

Consider the following Chern-Simons gauged O(3) sigma equations,

DµD
µφ = − 1

κ2
φ
(
〈Dµφ,Dµφ〉+φ3(1− φ3)2(1 + 2φ3)

)
+

1

κ2
(0, 0, (1− φ3)2(1 + 2φ3)),

(1)

κ

2
εµνλFνλ = −〈n× φ,Dµφ〉,(2)

where φ is a three component vector with unit norm, i.e. 〈φ, φ〉 = 1, Aµ :
R1,2 → R is the gauge field with µ = 0, 1, 2, εαβγ is the totally-antisymmetric
tensor with ε012 = 1, and n = (0, 0, 1) is the north pole of S2. The gauge
covariant derivative is defined by Dµφ = ∂µφ + Aµ(n × φ) and the Maxwell
field is given by Fµν = ∂µAν − ∂νAµ. The constant κ > 0 is a Chern-Simons
coupling constant. Greek indices, such as µ, ν will refer to all indices 0, 1, 2,
whereas latin indices, such as i, j, k, will refer only to the spatial indices 1, 2,
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unless otherwise specified. The usual inner product and cross product on R3

are given by

〈a, b〉 = a1b1 + a2b2 + a3b3,

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

The Lagrangian for the Chern-Simons gauged O(3) sigma model, proposed in
[3, 9], is given by

L =
1

2
Dµφ ·Dµφ+

κ

4
εµνρAµFνρ −

1

2κ2
(1 + φ3)(1− φ3)3.(3)

The energy density corresponding to the Lagrangian density (3) is

E(φ,A) =
1

2

[
|Dµφ|2 +

1

κ2
(1 + φ3)(1− φ3)3

]
. (4)

The conservation of the total energy implies that

E(t) :=

∫
R
E(t, x) dx =

∫
R
E(0, x) dx.(5)

The system of equations (1)-(2) is invariant under the following gauge trans-
formations

φ = (z, φ3)→ (zeiχ, φ3), Aµ → Aµ − ∂µχ,
where χ is a real valued smooth function on R2+1 and we use the notation
z = φ1 + iφ2. Therefore a solution of the system (1)-(2) is formed by a class of
gauge equivalent pairs (φ,Aµ). Here we study an initial value problem of (1)-(2)
under Lorenz gauge condition ∂µA

µ = 0 for which the system can be rewritten
as follows,

DµD
µφ = − 1

κ2
φ(〈Dµφ,Dµφ〉+ φ3(1− φ3)2(1 + 2φ3)) +

1

κ2
(0, 0, (1− φ3)2(1 + 2φ3)),

(6)

κF01 = 〈n× φ,D2φ〉,(7)

κF02 = 〈n× φ,D1φ〉,(8)

∂µA
µ = 0,(9)

supplemented by the constraint equation

κF12 = −〈n× φ,D0φ〉, (10)

and the initial data

Aµ(0, ·) = aµ, φ(0, ·) = φ0, ∂tφ(0, ·) = φ1,(11)

satisfying 〈φ0, φ1〉 = 0. For the formulation of equations (6)–(11), we refer to
Section 2.

In the usual sigma model (called wave map), evolution problems have been
studied extensively. Let us review briefly the results for global existence in time.
Wave map in 1+1 dimension extends smoothly all the time in [5, 13]. In (3+1)
dimension, development of singularities from smooth initial data was shown in



CSS 593

[7] by using the self-similar structure of the sigma model. Also Shatah proved
that there exists global weak solution to wave map which has an Sn target
manifold. The space two-dimensional case is critical. Tataru[15] and Tao[14]
proved global regularity of wave maps in (2+1) dimension under the assumption
of small Besov norm, respectively, small energy. In [16], Tataru proved rough
solutions and the continuous dependence on the initial data which is small in
the critical Sobolev spaces. Then Rodnianski [12] and Tataru [11] resolves the
finite time blow up solutions for the wave map problem from R2+1 → S2. The
global solutions of Chern-Simons sigma equations in one space dimension was
shown in [8]. The following is our main result.

Theorem 1.1. Let s > 3/2, consider the Cauchy problem of Chern-Simons
gauged O(3) sigma equations (6)-(9), with the initial data in the following
Sobolev space:

Aµ(0, ·) = aµ ∈ Hs(R2), φ(0, ·) = φ0 ∈ Hs(R2), ∂tφ(0, ·) = φ1 ∈ Hs−1(R2)

satisfying the constraint (10) and 〈φ0, φ1〉 = 0, then there exists a T > 0 and a
solution (A, φ) of (6)-(9) in [0, T )× R2 with

Aµ ∈ C([0, T );Hs(R2)), φ ∈ C([0, T ];Hs(R2)) ∩ C1([0, T ];Hs−1(R2)).

We use a . b denote a ≤ Cb for some constant C. A point in the 2+1
dimensional Minkowski space is written as (t, x) = (xα)0≤α≤2. Greek indices
range from 0 to 2, and Roman indices range from 1 to 2. We raise and lower
indices with the Minkowski metric, diag(1,−1,−1). We write ∂α = ∂xα and
∂t = ∂0, and we also use the Einstein notation. Therefore, ∂i∂i = ∆, and
∂α∂α = ∂2t −∆ = �.

2. Preliminaries

In this section we introduce basic facts of equations, function spaces and
some related theorems.

Let us consider calculus related with covariant derivative.

∂µ〈φ, ψ〉 = 〈Dµφ, ψ〉+ 〈φ,Dµψ〉,(1)

DµDνφ−DνDµφ = Fµν(n× φ),(2)

Dµ(fφ) = (∂µf)φ+ fDµφ,(3)

where φ, ψ are 3 component vector functions and f is a scalar function.
We review the constraint on the formulation of Cauchy problem (6)–(11).

Using the above formula and equations (6)–(7), we can check

∂t
(
κ(∂1A2 − ∂2A1) + 〈n× φ,D0φ〉

)
= κ∂1F02 − κ∂2F01 + 〈D0(n× φ), D0φ〉+ 〈n×, D0D0φ〉
= 〈Dµ(n× φ), Dµφ〉+ 〈(n× φ), DµD

µφ〉
= 〈(n× φ), DµD

µφ〉 = 0.

(4)
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Then (4) implies that constraint (10) is automatically satisfied at t ≥ 0 if the
initial data satisfy

κ(∂1a2 − ∂2a1) + 〈n× φ, φ1 + a0(n× φ0)〉 = 0.

Therefore we have shown that if (φ, Aµ) is a solution of the system (6)-(9)
subject to the initial data satisfying constraint (10), then it is also a solution of
equations (1)-(2) with the same initial data.

We can also check that the constraint |φ|2 = 1 is preserved as follows. If the
equation (6) is satisfied in time slab [0, T ]×R2, then ρ = |φ|2−1 is the solution
of the following equation

[∂µ∂
µ + 2〈Dµφ, D

µφ〉+ 2φ3(1− φ3)2(1 + 2φ3)] (|φ|2 − 1)

= 2〈Dµφ, D
µφ〉+ 2〈φ, DµD

µφ〉+ 2|φ|2〈Dµφ, D
µφ〉 − 2〈Dµφ, D

µφ〉
+ 2φ3|φ|2(1− φ3)2(1 + 2φ3)− 2φ3(1− φ3)2(1 + 2φ3) = 0.

This is a linear Klein-Gordon equation for the function ρ with external potential
2〈Dµφ, Dµφ〉+2φ3(1−φ3)2(1+2φ3). With the initial data ρ(0) = |φ0|2−1 = 0
and ∂tρ(0) = 2〈φ0, φ1〉 = 0, we have ρ = 0 in time slab [0, T ]× R2.

Now we introduce function spaces as well as used. The wave-Sobolev spaces
Hs,b = Hs,b(R1+n) are L2-based Sobolev spaces on the Minkowski space-time
R1+n, with Fourier weights adapted to the symbol of the D’Alembertian � =
−∂2t + ∆. Specifically, for given s, b ∈ R, Hs,b is the completion of the Schwartz
class S(R1+n) with respect to the norm

‖u‖Hs,b = ‖〈ξ〉s〈|τ | − |ξ|〉bũ(τ, ξ)‖L2
τ,ξ
,

‖u‖2Hs,b =

∫ ∫
(1 + |ξ|2)s(1 + ||τ | − |ξ||2)bũ2(τ, ξ)dτdξ,

N2
s+1,s =

∫ ∫
(1 + ||τ |+ |ξ||)2s+2(1 + ||τ | − |ξ||)2sũ2(τ, ξ)dτdξ,

Z2
s+1,s =

∫ ∫ (
(τ + |ξ|)2

)2
(ξ2 + 1)s(τ + |ξ|)2ũ2(τ, ξ)dτdξ

+

∫ ∫ (
(τ − |ξ|)2

)2
(ξ2 + 1)s(τ − |ξ|)2ũ2(τ, ξ)dτdξ,

where 〈·〉 = (1+ | · |2)
1
2 and ũ(τ, ξ) =

∫ ∫
e−i(tτ+x·ξ)u(t, x)dtdx is the space-time

Fourier transform.
Here the “elliptic weight” 〈ξ〉s is a familiar feature of the standard Sobolev

space Hs = Hs(Rn), obtained as the completion of S(Rn) with respect to the

norm ‖f‖Hs = ‖〈ξ〉sf̂(ξ)‖L2
ξ
, where f̂(ξ) =

∫
e−ix·ξf(x)dx is the spatial Fourier

transform. The “hyperbolic weight” 〈|τ | − |ξ|〉b, on the other hand, reflects the
fact that the Hs,b-norm is adapted to �, whose symbol is τ2 − |ξ|2.
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For T > 0, let Hs,b(ST ) denote the restriction space to ST = (−T, T )× R2.
We recall that fact that (see for [10])

Hs,b(ST ) ↪→ C([−T, T ];Hs) for b >
1

2
,

where ↪→ stands for Sobolev embedding.

We need product estimates of the form Hs1,b1 · Hs2,b2 ↪→ H−s0,−b0 which
means that

‖uv‖H−s0,−b0 ≤ C‖u‖Hs1,b1‖v‖Hs2,b2 for all u, v ∈ S(R1+n),

where C depends on the sα, bα and d. If this holds, it is said that the exponent
matrix (

s0 s1 s2
b0 b1 b2

)
is a product. In recent paper [2], the following product estimate in R1+2 is
established.

Theorem 2.1. Assume

b0 + b1 + b2 >
1

2
,

b0 + b1 ≥ 0,

b1 + b2 ≥ 0,

b0 + b2 ≥ 0,

s0 + s1 + s2 >
3

2
− (b0 + b1 + b2),

s0 + s1 + s2 > 1−min(b0 + b1, b0 + b2, b1 + b2),

s0 + s1 + s2 >
1

2
−min(b0, b1, b2),

s0 + s1 + s2 >
3

4
,

(s0 + b0) + 2s1 + 2s2 > 1,

2s0 + (s1 + b1) + 2s2 > 1,

2s0 + 2s1 + (s2 + b2) > 1,

s0 + s1 ≥ max(0, −b2),

s1 + s2 ≥ max(0, −b0),

s0 + s2 ≥ max(0, −b1).

Then (
s0 s1 s2
b0 b1 b2

)
is a product.
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Now we consider the following nonlinear Cauchy problem:

�u = F (t, x) ∈ R1+n,

u|t=0 = f, ∂tu|t=0 = g.
(5)

If F = Q(u, v), where u, v : R1+2 → Rm, and Q is a linear combination of the
three basic null forms as follows.

Q0(u, v) = ∂tu∂tv −∇u · ∇v,
Qij(u, v) = ∂iu∂jv − ∂ju∂iv,
Q0j(u, v) = ∂tu∂jv − ∂ju∂tv,

(6)

where ∂j stands for spatial derivatives, and ∇ is the spatial gradient. The
following null form estimates in Sobolev space which was proven by Grigoryan
and Nahmod in the n = 2 in [4].

Lemma 2.2. Let s > 3
2 , b ∈ ( 1

2 , 1) and ε ∈ [0, 1− b], then
‖Q(u, v)‖Hs−1, b−1+ε . ‖u‖Hs, b‖v‖Hs, b ,

where Q(u, v) includes all cases in (6).

3. Low regularity local well-posedness

The system (6)-(9) under the Lorenz gauge condition ∂µA
µ = 0 can be

rewritten as follows,

�φ = −φQ0(φ, φ)−AµAµφ3(n− φ3φ) + 2φ3A
µ∂µφ× φ,(1)

�Aµ = εµνρQ
νρ(n× φ, φ) + 2εµνρ∂

ν(Aρ|n× φ|2),(2)

where Q0, and Qνρ are the standard null forms.

�φ = −φ
(
Q0(φ, φ) +AµA

µ|n× φ|2
)
− 2Aµ∂µ(n× φ)−AµAµ(φ1, φ2, 0),

�A0 = Q12(n× φ, φ) + ∂1(A2|n× φ|2)− ∂2(A1|n× φ|2),

�A1 = Q02(n× φ, φ) + ∂0(A2|n× φ|2)− ∂2(A0|n× φ|2),

�A2 = −Q01(n× φ, φ)− ∂0(A1|n× φ|2) + ∂1(A0|n× φ|2).

We specify data

Aµ(0) ∈ Hs, (φ, ∂tφ)(0) ∈ Hs ×Hs−1. (3)

The data for ∂tAµ are given by the constaints

∂tA0(0) = ∂1A1(0) + ∂2A2(0) ∈ Hs−1,

∂tAj(0) = ∂jA0(0)− Jk(0) ∈ Hs−1,

where Jk = 〈n×φ,Djφ〉 = 〈n×φ, ∂jφ〉+〈n×φ,Aj(n×φ)〉, hence Jk(0) ∈ Hs−1

with the norm bounded in terms of the norm of (3).
In the remaining part of this section, we present estimates (1)-(2) with s > 3

2

and a given b > 1
2 .
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Proof of (1) for φQ0(φ, φ). We shall prove that

‖φQ0(φ, φ)‖Hs−1,b−1+ε . ‖φ‖3Hs, b .(4)

But (4) follows by Theorem 2.1 and Lemma 2.2,

‖φQ0(φ, φ)‖Hs−1,b−1+ε . ‖φ‖Hs, b‖Q0(φ, φ)‖Hs−1,b−1+ε ,

. ‖φ‖3Hs, b .

Proof of (1) for AµA
µφ|n× φ|2 and AµA

µ(φ1, φ2, 0). Trivially,

‖AµAµφ|n× φ|2‖Hs−1,b−1+ε . ‖Aµ‖2Hs, b‖φ‖
3
Hs, b ,

AµA
µ(φ1, φ2, 0)Hs−1,b−1+ε . ‖Aµ‖2Hs, b‖φ‖Hs, b .

Proof of (1) for Aµ∂µ(n× φ). By Theorem 2.1, we obtain

‖Aµ∂µ(n× φ)‖Hs−1,b−1+ε . ‖Aµ‖Hs, b‖φ‖Hs−1, b .

Proof of (2) for εµνρQ
νρ(n× φ, φ). Using Lemma 2.2, we know that

‖εµνρQνρ(n× φ, φ)‖Hs−1,b−1+ε . ‖n× φ‖Hs, b‖φ‖Hs, b
. ‖φ‖Hs, b‖φ‖Hs, b .

Proof of (2) for εµνρ∂
ν(Aρ|n× φ|2). By Leibniz’s rule, the estimates

‖εµνρ∂ν(Aρ|n× φ|2)‖Hs−1,b−1+ε . ‖Aµ‖Hs−1, b‖φ‖2Hs, b ,
‖εµνρ∂ν(Aρ|n× φ|2)‖Hs−1,b−1+ε . ‖Aµ‖Hs, b‖φ‖Hs−1, b‖φ‖Hs, b ,

holds by Theorem 2.1 if s > 3
2 and b > 1

2 .
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