• Title/Summary/Keyword: Side Impact Beam

Search Result 45, Processing Time 0.027 seconds

Optimization of the Aluminum Door Impact Beam Considering the Side Door Strength and the Side Impact Capability (옆문강도 및 측면충돌 성능을 고려한 알루미늄 도어 임펙트빔 최적화 연구)

  • Yang, Ji-Hyuck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2025-2030
    • /
    • 2011
  • Recently, several vehicle manufacturers have used the aluminum side door impact beam in order to reduce the vehicle weight and costs. But, the aluminum impact beam may cause the reduction of the side door strength and the side impact capability. Therefore, this paper optimized the section dimension and section shape of the side door impact beam to satisfy the legislation of the side door strength and maintain the side impact capability as well as steel impact beam

Study on the Optimization Design and Impact Experiment of Side Door for Impact Beam in the Vehicle Side Door (차량 측면도어 임팩트 빔의 최적설계 및 측면도어 충돌실험에 관한 연구)

  • Kim, Jae Yeol;Choi, Soon Ho
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • The impact beam, a beam-shaped reinforcement installed horizontally between the inside and outside panels of car doors, is gaining importance as a solution to meet the regulations on side collision of vehicles. In order to minimize pelvis injury which is the biggest injury happening to the driver and passengers when a vehicle is subject to side collision, energy absorption at the door impact beam should be maximized. For the inner panel, the thrust into the inside of the vehicle must be minimized. The impact beam should be as light as possible so that the extent of pelvis injury to the driver and passenger during side collision of the vehicle is minimal. To achieve this, the weight of the impact beam, has to be optimized. In this study, we perform a design analysis with a goal to reduce the weight of the current impact design by 30% while ensuring stability, reliability, and comparison data of the impact beam for mass production. We conduct three-point bending stress experiments on conventional impact beams and analyze the results. In addition, we use a side-door collision test apparatus to test the performance of beams made of three (different materials: steel, aluminum, and composite beams).

Optimization of the Automotive Side Door Impact Beam Considering Static Requirement (정적충돌성능을 고려한 자동차 옆문 충격빔의 최적설계)

  • 송세일;차익래;이권희;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.176-184
    • /
    • 2002
  • The door stiffness is one of the important factors for the side impact. Generally, the researches have been conducted on the assembled door. A side impact door beam is installed in a door to protect occupants from the side impact. This research is only concentrated on the side impact beam and a side impact beam is designed. The cross section is defined to have an elliptic shape. An optimization problem is defined to find the design maximizing the intrusion stiffness within the specified weight. Design variables are the radii and the thickness of the ellipsoid. The analysis of the side impact is carried out by the nonlinear finite element method. The optimization problem is solved by two methods. One is the experimental design scheme using an orthogonal array. The other is the gradient-based optimization using the response surface method(RSM). Both methods have obtained the better designs than the current one.

Development Process of Side Impact Beam for Automotive Light-Weighting Door using Sheet Type (자동차 도어 경량화를 위한 판재형 사이드 임팩트 빔 개발 프로세스)

  • Lee, I.C.;Lee, T.K.;Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.130-137
    • /
    • 2015
  • This paper presents the development process of automotive side door impact beam for passenger cars. Weight reduction while maintaining functional requirements is one of the major goals in the automotive industry. In this study, thin-walled side door beam using quenchable boron steel was designed to reduce the weight of conventional side door tubular one. In order to estimate design for the proposed side door beams, the static side impact protection tests(FMVSS 214) were conducted using the finite element method. Based on the simulation results, geometry modification of the side door beam has been performed via creating new reinforcing ribs. Furthermore, the manufactured frontal impact beam was mounted on the real side door of a passenger car, and then static impact protection test carried out. It is concluded that the presented test results can provide significant contribution to the stiffness of side door impact beams and light-weighting door research.

Development of Vehicle Door Side Impact Beam with High Tensile Steel using Roll Forming Process (고장력 소재로 롤-포밍 공법에 의한 자동차 도어 사이드 임팩트 빔 개발)

  • Son, Hee-Jin;Kim, Sung-Yuk;Oh, Beom-Seok;Kim, Key-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.82-87
    • /
    • 2012
  • The purpose of this study is to produce a side impact beam with high tensile steel using a roll forming process. The door side impact beam plays an important roll in a car because it protects passengers from external crash. The roll forming process is a continuous bending process wherein a long metal sheet is bended as it continuously passes several rolls. The characteristic of this study is that an impact beam is produced by a continuous process using a ultra high strength steel without a hardening heat treatment. A model was determined by analysing plasticity of a cross section shape considering high strength. Design parameters of the impact beam was determined by crash-analysing the model. Workpiece products were manufactured by designing dies for roll forming and setting them up in a following process line. Results of a bending test and a FEM analysis was considered and reviewed.

Development of Vehicle Door Impact Beam by Hot Stamping (핫스탬핑에 의한 자동차 도어 임팩트빔의 개발)

  • Yum, Young-Jin;Kim, Jong-Gook;Lee, Hyun-Woo;Hwang, Jung-Bok;Kim, Sun-Ung;Kim, Won-Hyuck;Yoo, Seung-Jo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.7-12
    • /
    • 2008
  • A hot stamping technology of vehicle door impact beam made of thin sheet steel has been developed, with the aim of ensuring occupant safety in a side collision. This technology has been implemented to increase the strength of vehicle body parts and to reduce not only the weight of door impact beam but also the number of work processes. Mechanical tests were performed to obtain material properties of hot-stamped specimen and those were used as input data in stamping and structural simulation for optimal design of door impact beam. Strength of hot-stamped door impact beam increased to the value 102% higher than that of conventional pipe-shaped door impact beam and structural simulation showed that hot-stamped door impact beam achieved 28% weight reduction.

  • PDF

Strength of Pipe Type Door Impact Beam with Changed Bracket Mounting Method and TRP Application (브라켓 마운팅 방법 변경과 TRP 적용에 따른 강관형 도어 임팩트 빔 강도)

  • Kang, Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.379-385
    • /
    • 2016
  • Door impact beam plays a key role in minimizing the occupant injury within the side impacted vehicle through preventing intrusion of the impacting vehicle. Steel pipe type door impact beam has been widely adopted since it has simple structure and the overall strength is easily determined according to the pipe size. The brackets welded at pipe ends connect the door impact beam and the door panels by spot welds. In this study, first, the effect of pipe thickness, bracket thickness and door mounting stiffness was respectively analyzed. Next, application of the tailor rolled pipe was examined and several alterations of the bracket mounting method were considered. Application of tailor rolled pipes with superior bracket mounting method showed remarkable strength enhancement and weight reduction possibility in comparison with the current door impact beam.

The Section Design of Press Door Impact Beam for Improving Bending Strength (굽힘 강도 향상을 위한 프레스 도어 임팩트 빔의 단면 설계)

  • Jo, Kyeongrae;Kang, Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.74-81
    • /
    • 2017
  • The door impact beam of the side-impacted vehicle plays a key role in securing occupant safety by preventing intrusion from the impacting vehicle. Despite the low production cost, the press door impact beam has been adopted sparingly because of the strength inferiority. In this study, the design technologies of the press beam aimed at improving bending strength were investigated. First, the effect of the section shape and size was examined. Next, thickness and material strength were increased. Also, the TRB beam application was simulated by varying combined thickness. Some TRB beams with reduced weight exhibited bending strength over the strength of the pipe beam. Then, the beam with a closed center section also showed remarkably enhanced maximum bending strength.

A Study on Side Impact Simulation Technique using Simple Beam Model (단순 보모델을 이용한 측면충돌 해석기술 연구)

  • 강성종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.170-177
    • /
    • 1997
  • In this study, an analysis technique using simple beam model for predicting structure crashworthiness of the passenger car side impacted with an angle by another passenger car was investigated. The simple model was composed of major beam-like side structure which carry almost all side impact load. A procedure of component collapse test, calculation of load carrying capability and dynamic simulation was carryed out sequentially. Transient dynamic algorithms and a computer program to simulate deformations and motions of the impacted car was developed. The developed procedure was applied to a 3 door passenger car side impacted with an angle of 75 degree and the analysis results show good agreements with the actual test results.

  • PDF

Design Improvement of Composite Door Section Impact Beam by Three-Point Bending Analysis (3점 굽힘 하중 해석을 통한 복합재 도어 임팩트 빔 단면형상 설계개선)

  • Ha, Jung-Chan;Oh, Sung Ha;Baek, In-Seok;Lee, Seok-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.80-87
    • /
    • 2020
  • The currently observed trend in car manufacturing is to increase energy-efficiency by producing lighter cars. This study examines the replacement of particular parts, specifically around the impact beam, with material composites 30% lighter than conventional steel currently used. The shape of the impact beam was determined as the trapezoidal cross-sectional area with central reinforcement, using three-point bending analysis. A prototype was fabricated based on the findings of our study and its performance was evaluated by the three-point bending analysis; 2 ply of aramid applied for its displacement. The performance of the final prototype for the door assembly was evaluated using a side-door strength test, which resulted to measured initial strength of 10.5 KN and intermediate strength of 15.6 KN. This research provides a promising solution for better impact beam manufacturing.