• Title/Summary/Keyword: SiO vapor

Search Result 620, Processing Time 0.031 seconds

Characteristics of diamond-like nanocomposite films grown by plasma enhanced chemical vapor deposition (플라즈마 화학기상증착에 의해 성장된 유사 다이아몬드 나노복합체 박막의 특성 평가)

  • 양원재;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.1
    • /
    • pp.36-40
    • /
    • 2003
  • The diamond-like nanocomposite (DLN) thin films were deposited on Si substrates using $CH_4/(C_2H_5O)_4Si/H_2$/Ar gas mixtures as source gases by the plasma enhanced chemical vapor deposition (PECVD). The chemical structure and microstructure of grown films were investigated and their tribological properties were evaluated by a ball-on-plate type tribometer. The deposited DLN films mainly consisted of diamond-like a-C:H and quartz-like a-Si:O networks. The DLN films had a good agreement with tribological coating applications due to their extremely low friction coefficients and low wear rates.

The Effect of Re-nitridation on Plasma-Enhanced Chemical-Vapor Deposited $SiO_2/Thermally-Nitrided\;SiO_2$ Stacks on N-type 4H SiC

  • Cheong, Kuan Yew;Bahng, Wook;Kim, Nam-Kyun;Na, Hoon-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.48-51
    • /
    • 2004
  • In this paper the importance of re-nitridation on a plasma-enhanced chemical-vapor deposited(PECVD) $SiO_2$ stacked on a thermally grown thin-nitrided $SiO_2$ on n-type 4H SiC have been investigated. Without the final re-nitridation process, the leakage current of metaloxidesemiconductor(MOS) was extremely large. It is believed that water and carbon, contamination from the low-thermal budget PECVD process, are the main factors that destroyed the high quality thin-buffer nitrided oxide. After re-nitridation annealing, the quality of the stacked gate oxide was improved. The reasons of this improvement are presented.

  • PDF

Preparation of YBaCuO System Superconducting Thin Films on Si(111) substrates by Chemical Vapor Deposition (CVD법에 의한 Si(111) 기판에 YBaCuO계 초전도 박막의 제조)

  • Yang, Suk-Woo;Kim, Young-Soon;Shin, Hyung-Shik
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.589-594
    • /
    • 1997
  • Superconducting $YBa_2Cu_3O_y$ thin films were prepared at the deposition temperature of $650^{\circ}C$ under oxygen partial pressure of 0.0126 Torr on Si(111) and SrTiO3(100) substrates by chemical vapor deposition technique using $\beta$-diketonates of Y, Ba and Cu as source materials. The thin film fabricated on $SrTiO_3(100)$ had a $T_{c,onset}$ of 91K and $T_{c.0}$ of 87K. The thin film prepared on Si(111) had a $T_{c,onset}$ of 91K but didn't have a $T_{c.0}$ at liquid nitrogen boiling point(77.3K). Dense and two-dimensionally well alligned microstructure was developed for the film deposited on $SrTiO_3(100)$ substrate whereas a relatively porous and randomly distributed microstructure was developed for the film prepared on Si(111) substrate.

  • PDF

Characterization of Air and SO2 Gas Corrosion of Silicon Carbide Nanofibers (탄화규소 나노섬유의 고온 대기 및 SO2 가스분위기에서의 부식물성)

  • Kim, Min-Jung;Lee, Dong-Bok
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.1
    • /
    • pp.36-40
    • /
    • 2010
  • The SiO vapor that was generated from a mixture of Si and $SiO_2$ was reacted at $1350^{\circ}C$ for 2 h under vacuum with carbon nanofibers to produce SiC nanofibers having an average diameter of 100~200 nm. In order to understand the gas corrosion behavior, SiC nanofibers were exposed to air up to $1000^{\circ}C$. SiC oxidized to amorphous $SiO_2$, but its oxidation resistance was inferior unlike bulk SiC, because of high surface area of nanofibers. When SiC nanofibers were exposed to Ar-1% $SO_2$ atmosphere, SiC oxidized to amorphous $SiO_2$, without forming $SiS_2$, owing to the thermodynamic stability of $SiO_2$.

Enhanced characteristics of TCO films with $(SiO_2)_3(ZnO)_7$ gas barrier layer on various plastic substrates (다양한 플라스틱 기판위에 $(SiO_2)_3(ZnO)_7$ 보호층을 갖는 투명 전도성 박막들의 특성 향상)

  • Kwon, Oh-Jeong;Kim, Dong-Yung;Ryu, Sung-Won;Sohn, Sun-Young;Hong, Woo-Pyo;Kim, Hwa-Min;Hong, Jae-Suk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.283-284
    • /
    • 2008
  • Electrical and optical characteristics of indium tin oxide (ITO) and indium zinc oxide (IZO) films without and with $(SiO_2)_3(ZnO)_7$ at.% (SZO) film deposited on poly(ethylene naphthalate) (PEN) and poly(ethylene terephthalate (PET) substrates as a gas barrier layer for flexible display were studied. The ITO and IZO films with SZO gas barrier layer showed the improved properties which were both the high transmittance of average 80% in the visible light range and the decreased sheet resistance as compared to those of ITO and IZO films without SZO layer. Particularly, the PEN substrate with only SZO gas barrier layer had a low water vapor transmission rate (WVTR) of $\sim10^{-3}g/m^2$/day. Thus, we suggest that the SZO film with protection ability against the water vapor permeation can be applied to gas barrier layer for flexible display.

  • PDF

Chemical structure evolution of low dielectric constant SiOCH films during plasma enhanced plasma chemical vapor deposition and post-annealing procedures

  • Xu, Jun;Choi, Chi-Kyu
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.34-46
    • /
    • 2002
  • Si-O-C-H films with a low dielectric constant were deposited on a p-type Si(100) substrate using a mixture gases of the bis-trimethylsilyl-methane (BTMSM) and oxygen by an inductively coupled plasma chemical vapor deposition (ICPCYD). High density plasma of about $~10^{12}\textrm{cm}^{-3}$ is obtained at low pressure (<400 mTorr) with rf power of about 300W in ICPCVD where the BTMSM and $O_2$ gases are fully dissociated. Fourier transform infrared (FTIR) spectra and X-ray photoelectron spectroscopy (XPS) spectra show that the film has $Si-CH_3$ and OH-related bonds. The void within films is formed due to $Si-CH_3$ and OH-related bonds after annealing at $500^{\circ}C$ for the as-deposition samples. The lowest relative dielectric constant of annealed film at $500^{\circ}C$ is about 2.1.

  • PDF

Chemical Properteis and Contact Angle on SiOC (SiOC 박막의 접촉각과 화학적 특성의 상관성)

  • Oh, Teresa;Kim, Hong-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.205-205
    • /
    • 2007
  • The SiOC film of carbon centered system was prepared using bistrimethylsilylmethane and oxygen mixed precursor by the chemical vapor deposition. The chemical properties of the SiOC film were analyzed by the I-V measurement and FTIR spectra. The main bond of 950~1200 cm-1 was composed of the Si-C, Si-O-C and Si-O bonds. The leakage current of the SiOC film increased with the increasing of the carbon content, and the drift of the current was similar to the Si-O-C bond content.

  • PDF

Analysis of the Na Gettering in PSG/SiO2/Al-1%Si Multilevel Thin Films using XPS and SIMS (XPS와 SIMS를 이용한 PSG/SiO2/Al-1%Si 적층 박막내의 Na 게터링 분석)

  • Kim, Jin Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.467-471
    • /
    • 2016
  • In order to investigate the Na gettering, PSG/$SiO_2$/Al-1%Si multilevel thin films were fabricated. DC magnetron sputter techniques and APCVD (atmosphere pressure chemical vapor deposition) were utilized for the deposition of Al-1%Si thin films and PSG/$SiO_2$ passivations, respectively. Heat treatment was carried out at $300^{\circ}C$ for 5 h in air. SIMS (secondary ion mass spectrometry) depth profiling and XPS (X-ray Photoelectron Spectroscopy) analysis were used to determine the distribution and binding energies of Na, Al, Si, O, P and other elements throughout the PSG/$SiO_2$/Al-1%Si multilevel thin films. Na peaks were mainly observed at the the PSG/$SiO_2$ interface and at the $SiO_2$/Al-1%Si interfaces. Na impurity gettering in PSG/$SiO_2$/Al-1%Si multilevel thin films is considered to be caused by a segregation type of gettering. The chemical state of Si and O elements in PSG passivation appears to be $SiO_2$.

Hydrogen Fluoride Vapor Etching of SiO2 Sacrificial Layer with Single Etch Hole (단일 식각 홀을 갖는 SiO2 희생층의 불화수소 증기 식각)

  • Chayeong Kim;Eunsik Noh;Kumjae Shin;Wonkyu Moon
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.328-333
    • /
    • 2023
  • This study experimentally verified the etch rate of the SiO2 sacrificial layer etching process with a single etch hole using vapor-phase hydrogen fluoride (VHF) etching. To fabricate small-sized polysilicon etch holes, both circular and triangular pattern masks were employed. Etch holes were fabricated in the polysilicon thin film on the SiO2 sacrificial layer, and VHF etching was performed to release the polysilicon thin film. The lateral etch rate was measured for varying etch hole sizes and sacrificial layer thicknesses. Based on the measured results, we obtained an approximate equation for the etch rate as a function of the etch hole size and sacrificial layer thickness. The etch rates obtained in this study can be utilized to minimize structural damage caused by incomplete or excessive etching in sacrificial layer processes. In addition, the results of this study provide insights for optimizing sacrificial layer etching and properly designing the size and spacing of the etch holes. In the future, further research will be conducted to explore the formation of structures using chemical vapor deposition (CVD) processes to simultaneously seal etch hole and prevent adhesion owing to polysilicon film vibration.

A Study on Alkali ion-Sensitivity of $Si_{x}O_{y}N_{z}$ Fabricated by Low Pressure Chemical Vapor Deposition (저압화학기상 성장법으로 제작된 $Si_{x}O_{y}N_{z}$의 알칼리이온 감지성에 관한 연구)

  • Shin, P.K.;Lee, D.C.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.200-206
    • /
    • 1997
  • Using $SiCl_{2}H_{2}$, $NH_{3}$ and $N_{2}O$, we have fabricated silicon oxynitride ($Si_{x}O_{y}N_{z}$) layers on thermally oxidized silicon wafer by low pressure chemical vapor deposition. Three different compositions were achieved by controlling gas flow ratios($NH_{3}/N_{2}O$)) to 0.2, 0.5 and 2 with fixed gas flow of $SiCl_{2}H_{2}$. Ellipsometry and high frequency capacitance-voltage(HFCV) measurements were adapted to investigate the difference of the refractive index, dielectric constant, and composition, respectively. Regardless of nitride content, silicon oxynitrides had similar stability to silicon nitrides. The relative standing of alkali ion sensitivity in silicon oxynitride layers was influenced by nitride content. The better alkali ion-sensitivity was achieved by increasing oxide content in bulk of silicon oxynitrides.

  • PDF