• Title/Summary/Keyword: SiC power device

Search Result 147, Processing Time 0.029 seconds

SiC based Technology for High Power Electronics and Packaging Applications

  • Sharma, Ashutosh;Lee, Soon Jae;Jang, Young Joo;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.71-78
    • /
    • 2014
  • Silicon has been most widely used semiconductor material for power electronic systems. However, Si-based power devices have attained their working limits and there are a lot of efforts for alternative Si-based power devices for better performance. Advances in power electronics have improved the efficiency, size, weight and materials cost. New wide band gap materials such as SiC have now been introduced for high power applications. SiC power devices have been evolved from lab scale to a viable alternative to Si electronics in high-efficiency and high-power density applications. In this article, the potential impact of SiC devices for power applications will be discussed along with their Si counterpart in terms of higher switching performance, higher voltages and higher power density. The recent progress in the development of high voltage power semiconductor devices is reviewed. Future trends in device development and industrialization are also addressed.

A Study on the Auxiliary Power Supply for the Railway Vehicle by Using Wide Band Gap Device (Wide Band Gap 소자를 적용한 철도차량용 보조전원장치에 관한 연구)

  • Choi, Yeon-Woo;Lee, Byoung-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.168-173
    • /
    • 2018
  • In this paper, an auxiliary power supply (APS) for railroad cars is proposed. The APS can reduce the number of devices required to supply power through structural modification and operates at a high switching frequency by application of a SiC device. The voltage stress on the device in the proposed circuit can be reduced to less than half of the input voltage of the system; thus, a device with low breakdown voltage can be designed. By adapting a SiC device instead of an IGBT device, the proposed circuit can reduce switching and conduction losses and operate at a high switching frequency, thereby reducing output voltage and inductor current ripples in the proposed circuit. The theoretical analysis results of the proposed APS are verified with a 40 kW computer-based simulation and a 2 kW experiment.

4H-SiC MESFET Large Signal modeling for Power device application (전력소자 응용을 위한 4H-SiC MESFET 대신호 모텔링)

  • Lee, Soo-Woong;Song, Nam-Jin;Burm, Jin-Wook;Ahn, Chul
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.229-232
    • /
    • 2001
  • 4H-SIC(silicon carbide) MESFET large signal model was studied using modified Materka-Kacprzak large signal MESFET model. 4H-SiC MESFET device simulation have been conducted by Silvaco's 2D device simulator, ATLAS. The result is modeled using modified Materka large signal model. simulation and modeling results are -8V pinch off voltage, under $V_{GS=0V}$, $V_{DS=25V}$ conditions, $I_{DSS=270㎃}$mm, $G_{m=45㎳}$mm were obtained. Through the power simulation 2GHz, at the bias of $V_{GS=-4V}$ and $V_{DS=25V}$, 10dB Gain, 34dBm(1dB compression point)output power, 7.6W/mm power density, 37% PAE(power added efficiency) were obtained.d.d.d.

  • PDF

A SiC MOSFET Based High Efficiency Interleaved Boost Converter for More Electric Aircraft

  • Zaman, Haider;Zheng, Xiancheng;Yang, Mengxin;Ali, Husan;Wu, Xiaohua
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.23-33
    • /
    • 2018
  • Silicon Carbide (SiC) MOSFET belongs to the family of wide-band gap devices with inherit property of low switching and conduction losses. The stable operation of SiC MOSFET at higher operating temperatures has invoked the interest of researchers in terms of its application to high power density (HPD) power converters. This paper presents a performance study of SiC MOSFET based two-phase interleaved boost converter (IBC) for regulation of avionics bus voltage in more electric aircraft (MEA). A 450W HPD, IBC has been developed for study, which delivers 28V output voltage when supplied by 24V battery. A gate driver design for SiC MOSFET is presented which ensures the operation of converter at 250kHz switching frequency, reduces the miller current and gate signal ringing. The peak current mode control (PCMC) has been employed for load voltage regulation. The efficiency of SiC MOSFET based IBC converter is compared against Si counterpart. Experimentally obtained efficiency results are presented to show that SiC MOSFET is the device of choice under a heavy load and high switching frequency operation.

The Optimal Design and Electrical Characteritics of 1,700 V Class Double Trench Gate Power MOSFET Based on SiC (1,700 V급 SiC 기반의 단일 및 이중 트렌치 게이트 전력 MOSFET의 최적 설계 및 전기적 특성 분석)

  • Ji Yeon Ryou;Dong Hyeon Kim;Dong Hyeon Lee;Ey Goo Kang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.385-390
    • /
    • 2023
  • In this paper, the 1,700 V level SiC-based power MOSFET device widely used in electric vehicles and new energy industries was designed, that is, a single trench gate power MOSFET structure and a double trench gate power MOSFET structure were proposed to analyze electrical characteristics while changing the design and process parameters. As a result of comparing and analyzing the two structures, it can be seen that the double trench gate structure shows quite excellent characteristics according to the concentration of the drift layer, and the breakdown voltage characteristics according to the depth of the drift layer also show excellent characteristics of 200 V or more. Among them, the trench gate power MOSFET device can be applied not only to the 1,700 V class but also to a voltage range above it, and it is believed that it can replace all Si devices currently applied to electric vehicles and new energy industries.

Analysis of Switch Device Losses through Threshold Voltage and Miller Plateau Voltage (문턱전압과 밀러플래토 전압을 통한 스위치 소자의 손실 분석)

  • Park, Sae Hee;Seong, Ho-Jae;Hyun, Seung-Wook;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.133-134
    • /
    • 2017
  • This paper analyzes switch Device losses and efficiency depending on SiC and Si devices. The switch devices loss is compared to Si and SiC-based elements through Threshold Voltage and Miller Platequ Voltage. And analyzed through comparison of each switching loss by experiment.

  • PDF

Impact of Interface Charges on the Transient Characteristics of 4H-SiC DMOSFETs

  • Kang, Min-Seok;Bahng, Wook;Kim, Nam-Kyun;Ha, Jae-Geun;Koh, Jung-Hyuk;Koo, Sang-Mo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.236-239
    • /
    • 2012
  • In this paper, we study the transient characteristics of 4H-SiC DMOSFETs with different interface charges to improve the turn-on rising time. A physics-based two-dimensional mixed device and circuit simulator was used to understand the relationship between the switching characteristics and the physical device structures. As the $SiO_2$/SiC interface charge increases, the current density is reduced and the switching time is increased, which is due primarily to the lowered channel mobility. The result of the switching performance is shown as a function of the gate-to-source capacitance and the channel resistance. The results show that the switching performance of the 4H-SiC DMOSFET is sensitive to the channel resistance that is affected by the interface charge variations, which suggests that it is essential to reduce the interface charge densities in order to improve the switching speed in 4H-SiC DMOSFETs.

The Electrical Characteristics of 1200V Trench Gate MOSFET Based on SiC (1200V급 SiC 기반 트렌치 게이트 MOSFET의 전기적 특성에 관한 연구)

  • Yu Rim Kim;Dong Hyeon Lee;Min Seo Kim;Jin Woo Choi;Ey Goo Kang
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.103-108
    • /
    • 2023
  • This research was carried out experiments with changing processes and design parameters to optimally design a SiC-based 1200V power MOSFET, and then, essential electrical characteristics were derived. In order to secure the excellence of the trench gate type SiC power MOSFET device to be designed, electrical characteristics were derived by designing it under conditions such as planner gate SiC power MOSFET, and it was compared with the trench gate type SiC power MOSFET device. As a result of the comparative analysis, the on-resistance while maintaining the yield voltage was 1,840mΩ, for planner gate power MOSFET and to 40mΩ for trench gate power MOSFET, respectively, indicating characteristics more than 40 times better. It was judged that excellent results were derived because the temperature resistance directly affects energy efficiency. It is predicted that the devices optimized through this experiment can sufficiently replace the IGBT devices generally used in 1200V class, and that since the SiC devices are wide band gap devices, they will be widely used to apply semiconductors for vehicles using devices with excellent thermal characteristics.

Epitaxial Layer Growth of p-type 4H-SiC(0001) by the CST Method and Electrical Properties of MESFET Devices with Epitaxially Grown Layers (CST 승화법을 이용한 p-type 4H-SiC(0001) 에픽텍셜층 성장과 이를 이용한 MESFET 소자의 전기적 특성)

  • Lee, Gi-Sub;Park, Chi-Kwon;Lee, Won-Jae;Shin, Byoung-Chul;Nishino, Shigehiro
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1056-1061
    • /
    • 2007
  • A sublimation epitaxial method, referred to as the Closed Space Technique (CST) was adopted to produce thick SiC epitaxial layers for power device applications. In this study, we aimed to systematically investigate surface morphologies and electrical properties of SiC epitaxial layers grown with varying a SiC/Al ratio in a SiC source powder during the sublimation growth using the CST method. The surface morphology was dramatically changed with varying the SiC/Al ratio. When the SiC/Al ratio of 90/1 was used, the step bunching was not observed in this magnification and the ratio of SiC/Al is an optimized range to grow of p-type SiC epitaxial layer. It was confirmed that the acceptor concentration of epitaxial layer was continuously decreased with increasing the SiC/Al ratio. 4H-SiC MESFETs haying a micron-gate length were fabricated using a lithography process and their current-voltage performances were characterized. It was confirmed that the increase of the negative voltage applied on the gate reduced the drain current, showing normal operation of FET device.

4H-SiC MESFET Large Signal Modeling using Modified Materka Model (Modified Materka Model를 이용한 4H-SiC MESFET 대신호 모델링)

  • 이수웅;송남진;범진욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.6
    • /
    • pp.890-898
    • /
    • 2001
  • 4H-SiC(silicon carbide) MESFET large signal model was studied using modified Materka-Kacprzak large signal MESFET model. 4H-SiC MESFET device simulation have been conducted by Silvaco\`s 2D device simulator, ATLAS. The result is modeled using modified Materka large signal model. simulation and modeling results are -8 V pinch off voltage, under V$\_$GS/=0 V, V$\_$DS/=25 V conditions, I$\_$DSS/=270 mA/mm, G$\_$m/=52.8 ms/mm were obtained. Through the power simulation 2 GHz, at the bias of V$\_$GS/-4 V md V$\_$DS/=25 V, 10 dB Gain, 34 dBm (1dB compression point)output porter, 7.6 W/mm power density, 37% PAE(power added efficiency) were obtained.7.6 W/mm power density, 37% PAE(power added efficiency) were obtained.d.

  • PDF