• Title/Summary/Keyword: SiC power device

Search Result 148, Processing Time 0.023 seconds

Electrical Properties of Organic Photovoltaic Cell using CuPc (CuPc를 이용한 유기 광기전 소자의 전기적 특성)

  • Lee, Ho-Shik;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.612-614
    • /
    • 2008
  • Organic photovoltaic effects were studied in a device structure of ITO/CuPc/Al and ITO/CuPc/$C_{60}$/BCP/Al. A thickness of CuPc layer was varied from 10nm to 50nm, we have obtained that the optimum CuPc layer thickness is around 40nm from the analysis of the current density-voltage characteristics in CuPc single layer photovoltaic cell. From the thickness-dependent photovoltaic effects in CuPc/$C_{60}$ heterojunction devices, higher power conversion efficiency was obtained in ITO/20nm CuPc/40nm $C_{60}$/Al, which has a thickness ratio (CuPc:$C_{60}$) of 1:2 rather than 1:1 or 1:3. Light intensity on the device was measured by calibrated Si-photodiode and radiometer/photometer of International Light Inc(IL14004).

  • PDF

A Study of the Fabrication and Enhancement of Film Bulk Acoustic Wave Resonator using Two-Step Deposition Method of Piezoelectric Layer (압전층의 2단 증착법을 이용한 체적 음향파 박막형 공진기의 제작과 성능향상에 관한 연구)

  • Park Sung-Hyun;Chu Soon-Nam;Lee Neung-Heon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.7
    • /
    • pp.308-314
    • /
    • 2005
  • The 2 GHz film bulk acoustic wave resonator(FBAR), one of the most necessary device of the next generation mobile communication system, consisted of solidly mounted resonator(SMR) structure using Brags reflector, was researched in this paper The FBAR applied SiO$_{2}$ and W had large difference of the acoustic impedance to reflector Al to electrode and ZnO to piezoelectric layer. Specially, the FBAR applied the two-step deposition method to improve the c-axis orientation and increase reproducibility of the fabrication device had good performance. The electrical properties of plasma such as impedance, resistance, reactance, $V_{pp},\;I{pp}$, VSWR and phase difference of voltage and current, was analyzed and measured by RF sensor with the variable experiment process factors such as gas ratio, RF power and base vacuum level about concerning the thickness, c-axis orientation, adhesion and roughness. The FBAR device about the optimum condition resulted reflection loss(S$_{11}$) of -17 dB, resonance frequency of 1.93 GHz, electric-mechanical coefficient(k$_{eff}$) of 2.38 $\%$ and Qualify factor of 580. It was seen better qualify than the common dielectric filter at present and expected on business to the filter device of 2 GHz bandwidth with the MMIC technology.

Design of a 2kW Bidirectional Synchronous DC-DC Converter for Battery Energy Storage System (배터리 에너지 저장장치용 고효율 2kW급 양방향 DC-DC 컨버터 설계)

  • Lee, Taeyeong;Cho, Byung-Geuk;Cho, Younghoon;Hong, Chanook;Lee, Han-Sol;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.312-323
    • /
    • 2017
  • This paper introduces the bidirectional dc-dc converter design case study, which employs silicon-carbide (SiC) MOSFETs for battery energy storage system (BESS). This converter topology is selected as bidirectional synchronous buck converter, which is composed of a half bridge converter, an inductor, and a capacitor, where the converter has less conduction loss than that of a unidirectional buck and boost converter, and to improve the converter efficiency, both the power stage design and power conversion architecture are described in detail. The conduction and switching losses are compared among three different SiC devices in this paper. In addition, the thermal analysis using Maxwell software of each switching device supports the loss analyses, in which both the 2 kW prototype analyses and experimental results show very good agreement.

A Study of SiC Trench Schottky Diode with Tilt-Implantation for Edge Termination (Edge Termination을 위해 Tilt-Implantation을 이용한 SiC Trench Schottky Diode에 대한 연구)

  • Song, Gil-Yong;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.214-219
    • /
    • 2014
  • In this paper, the usage of tilt-implanted trench Schottky diode(TITSD) based on silicon carbide is proposed. A tilt-implanted trench termination technique modified for SiC is proposed as a method to keep all the potentials confined in the trench insulator when reverse blocking mode is operated. With the side wall doping concentration of $1{\times}10^{19}cm^{-3}$ nitrogen, the termination area of the TITSD is reduced without any sacrifice in breakdown voltage while potential is confined within insulator. When the trench depth is set to 11um and the width is optimized, a breakdown voltage of 2750V is obtained and termination area is 38.7% smaller than that of other devices which use guard rings for the same breakdown voltage. A Sentaurus device simulator is used to analyze the characteristics of the TITSD. The performance of the TITSD is compared to the conventional trench Schottky diode.

Characteristics of Ta-Ti Gate Electrode for NMOS Device (NMOS 소자의 Ta-Ti 게이트 전극 특성)

  • Kang, Young-Sub;Seo, Hyun-Sang;Noh, Young-Gin;Lee, Chung-Keun;Hong, Shin-Nam
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.211-216
    • /
    • 2003
  • In this paper, characteristics of Ta-Ti alloy was studied as a gate electrode for NMOS devices to replace the widely used polysilicon. Ta-Ti alloy was deposited directly on $SiO_2$ by a co-sputtering method using two of Ta and Ti targets. The sputtering power of each metal target was 100W. To compare with Ta-Ti, Ta deposited with a 100W sputtering power was fabricated as well. In order to investigate the thermal/chemical stability of the Ta-Ti alloy gate, the alloy was annealed at $600^{\circ}C$ with rapid thermal annealer. No appreciable degradation of the device was observed. Also the results of electrical analysis showed that the work function of Ta-Ti metal alloy was about 4.1eV which was suitable for NMOS devices and sheet resistance of alloy was lower than that of polysilicon.

  • PDF

Properties of AlN epilayer grown on 6H-SiC substrate by mixed-source HVPE method (6H-SiC 기판 위에 혼합소스 HVPE 방법으로 성장된 AlN 에피층 특성)

  • Park, Jung Hyun;Kim, Kyoung Hwa;Jeon, Injun;Ahn, Hyung Soo;Yang, Min;Yi, Sam Nyung;Cho, Chae Ryong;Kim, Suck-Whan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.3
    • /
    • pp.96-102
    • /
    • 2020
  • In this paper, AlN epilayers on 6H-SiC (0001) substrate are grown by mixed source hydride vapor phase epitaxy (MS-HVPE). AlN epilayer of 0.5 ㎛ thickness was obtained with a growth rate of 5 nm per hour. The surface of AlN epilayer grown on 6H-SiC (0001) substrate was investigated by field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS). Dislocation density was considered through HR-XRD and related calculations. A fine crystalline AlN epilayer with screw dislocation density of 1.4 × 109 cm-2 and edge dislocation density of 3.8 × 109 cm-2 was confirmed. The AlN epilayer on 6H-SiC (0001) substrate grown by using the mixed source HVPE method could be applied to power devices.

RF Power Dependence of Stresses in Plasma Deposited Low Resistive Tungsten Films for VLSI Devices (고집적 소자에 적용되는 저저항 텅스텐 박막에서 응력의 RF power 의존성)

  • Lee, Chang-U;Go, Min-Gyeong;O, Hwan-Won;U, Sang-Rok;Yun, Seong-Ro;Kim, Yong-Tae;Park, Yeong-Gyun;Gho, Seok-Jung
    • Korean Journal of Materials Research
    • /
    • v.8 no.11
    • /
    • pp.977-981
    • /
    • 1998
  • Controlling the wafer temperatures from 200 to$500^{\circ}C$, low resistive tungsten thin films used for VLSI metallization are deposited by PECVD method. Resistivities of plasma deposited tungsten thin films are very sensitive to the $H_2/WF_6 $ partial pressure ratios. Residual stress behaviors of the films as a function of plasma power density were also studied. At the power density under the $0.7W/\textrm{cm}^2$, residual stress of W film is about $2.4\times10^9dyne/\textrm{cm}^2$. When the power density is. however, increased from 1.8 to $2.7W/\textrm{cm}^2$, residual stress is suddenly increased from $8.1\times10^9$ to $1.24\times10^{10}dyne/\textrm{cm}^2$ ue to the ion or radical bombardment at high power density.

  • PDF

A Study on LCL Circuit for Satellite Power System Applying WBG Device (WBG 소자를 적용한 위성 전력 시스템용 LCL 회로에 관한 연구)

  • Yoo, Jeong Sang;Ahn, Tae Young;Gil, Yong Man;Kim, Hyun Bae;Park, Sung Woo;Kim, Kyu Dong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.101-106
    • /
    • 2022
  • In this paper, WBG semiconductor such as SiC and GaN were applied as power switches for LCL circuit that can be applied to satellite power systems and the test results of the LCL circuit are reported. P-channel MOSFET and N-channel MOSFET, which were generally used in the conventional LCL circuit, were applied together to expand the utility of the test results. The design and stability evaluation were performed using a Micro Cap circuit simulation program. For the test circuit, a module using each switch was manufactured, and a total of 5 modules were manufactured and the steady state and transient state characteristics were compared. From the experimental results, the LCL circuit for power supply of the satellite power system constructed in this paper satisfied the constant current and constant voltage conditions under various operating conditions. The P-channel MOSFET showed the lowest efficiency characteristics, and the three N-channel switches of Si, SiC and GaN showed relatively high efficiency characteristics of up to 99.05% or more. In conclusion, it was verified that the on-resistor of the switch had a direct effect on the efficiency and loss characteristics.

Temperature-Dependent Characteristics of SBD and PiN Diodes in 4H-SiC (온도에 따른 4H-SiC에 기반한 SBD, PiN 특성 비교)

  • Seo, Ji-Ho;Cho, Seulki;Lee, Young-Jae;An, Jae-In;Min, Seong-Ji;Lee, Daeseok;Koo, Sang-Mo;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.362-366
    • /
    • 2018
  • Silicon carbide is widely used in power semiconductor devices owing to its high energy gap. In particular, Schottky barrier diode (SBD) and PiN diodes fabricated on 4H-SiC wafers are being applied to various fields such as power devices. The characteristics of SBD and PiN diodes can be extracted from C-V and I-V characteristics. The measured Schottky barrier height (SBH) was 1.23 eV in the temperature range of 298~473 K, and the average ideal factor is 1.17. The results show that the device with the Schottky contact is characterized by the theory of thermal emission. As the temperature increases, the parameters are changed and the Vth is shifted to lower voltages.

Testbed of Power MOSFET Aging Including the Measurement of On-State Resistance (전력용 MOSFET의 온-상태 저항 측정 및 노화 시험 환경 구축)

  • Shin, Joonho;Shin, Jong-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.206-213
    • /
    • 2022
  • This paper presents setting up a laboratory-scale testbed to estimate the aging of power MOSFET devices and integrated power modules by measuring its on-state voltage and current. Based on the aging mechanisms of the component inside the power module (e.g., bond-wire, solder layer, and semiconductor chip), a system to measure the on-state resistance of device-under-test (DUT) is designed and experimented: a full-bridge circuit applies current stress to DUT, and a temperature chamber controls the ambient temperature of DUT during the aging test. The on-state resistance of SiC MOSFET measured by the proposed testbed was increased by 2.5%-3% after 44-hour of the aging test.