• 제목/요약/키워드: SiC paper

검색결과 939건 처리시간 0.031초

LPCVD로 성장된 다결정 3C-SiC 박막의 물리적 특성 (Physical Characteristics of Polycrystalline 3C-SiC Thin Films Grown by LPCVD)

  • 정귀상;김강산
    • 한국전기전자재료학회논문지
    • /
    • 제19권8호
    • /
    • pp.732-736
    • /
    • 2006
  • This paper describes the physical characterizations of polycrystalline 3C-SiC thin films heteroepitaxially grown on Si wafers with thermal oxide, In this work, the 3C-SiC film was deposited by LPCVD (low pressure chemical vapor deposition) method using single precursor 1, 3-disilabutane $(DSB:\;H_3Si-CH_2-SiH_2-CH_3)\;at\;850^{\circ}C$. The crystallinity of the 3C-SiC thin film was analyzed by XPS (X-ray photoelectron spectroscopy), XRD (X-ray diffraction) and FT-IR (fourier transform-infrared spectometers), respectively. The surface morphology was also observed by AFM (atomic force microscopy) and voids or dislocations between SiC and $SiO_2$ were measured by SEM (scanning electron microscope). Finally, residual strain was investigated by Raman scattering and a peak of the energy level was less than other type SiC films, From these results, the grown poly 3C-SiC thin film is very good crystalline quality, surface like mirror, and low defect and strain. Therefore, the polycrystalline 3C-SiC is suitable for harsh environment MEMS (Micro-Electro-Mechanical-Systems) applications.

AlN 버퍼층위에 성장된 다결정 3C-SiC 박막의 라만 특성 (Raman characteristics of polycrysta1line 3C-SiC thin films grown on AlN buffer layer)

  • 이윤명;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.93-93
    • /
    • 2008
  • This paper presents the Raman scattering characteristics of poly (polycrystalline) 3C-SiC thin films deposited on AlN buffer layer by atmospheric pressure chemical vapor deposition (APCVD) using hexamethyldisilane (MHDS) and carrier gases (Ar + $H_2$).The Raman spectra of SiC films deposited on AlN layer of before and after annealings were investigated according to the growth temperature of 3C-SiC. Two strong Raman peaks, which mean that poly 3C-SiC admixed with nanoparticle graphite, were measured in them. The biaxial stress of poly 3C-SiC/AlN was calculated as 896 MPa from the Raman shifts of 3C-SiC deposited at $1180^{\circ}C$ on AlN of after annealing.

  • PDF

도핑농도에 따른 다결정 3C-SiC 마이크로 공진기의 특성 (Characteristics of poly 3C-SiC micro resonators with doping concentrations)

  • 정귀상;이태원
    • 센서학회지
    • /
    • 제18권3호
    • /
    • pp.207-209
    • /
    • 2009
  • This paper describes the characteristics of poly 3C-SiC micro resonators with $3{\times}10^{17}{\sim}1{\times}10^{19}cm^{-3}$ doping concentrations. The 1.2 ${\mu}m$ thick cantilever and the 0.4 ${\mu}m$ thick doubly clamped beam resonators with different lengths were fabricated using poly 3C-SiC thin films. The characteristics of poly 3C-SiC micro resonators were evaluated by quartz and a laser vibrometer in vacuum at room temperature. The resonant frequencies of micro resonators decreased with doping concentrations owing to reduction in the Young's modulus of poly 3C-SiC thin films. It was confirmed that the resonant frequencies of poly 3C-SiC resonators are controllable by doping concentrations. Therefore, poly 3C-SiC resonators could be applied to MEMS devices and bio/chemical sensor applications.

AlN 완충층을 이용한 다결정 3C-SiC 박막의 결정성장 (Crystal growth of polyctystalline 3C-SiC thin films on AlN buffer layer)

  • 김강산;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.333-334
    • /
    • 2007
  • This paper describes the characteristics of poly (polycrystalline) 3C-SiC grown on SiOz and AlN substrates, respectively. The crystalline quality of poly 3C-SiC was improved from resulting in decrease of FWHM (full width half maximum) of XRD by increasing the growth temperature. The minimum growth temperature of poly 3C-SiC was $1100^{\circ}C$. The surface chemical composition and the electron mobility of poly 3C-SiC grown on each substrate were investigated by XPS and Hall Effect, respectively. The chemical compositions of surface of poly 3C-SiC films grown on $SiO_2$ and AlN were not different. However, their electron mobilities were $7.65\;cm^2/V.s$ and $14.8\;cm^2/V.s$, respectively. Therefore, since the electron mobility of poly 3C-SiC films grown on AlN buffer layer was two times higher than that of 3C-SiC/$SiO_2$, a AlN film is a suitable material, as buffer layer, for the growth of poly 3C-SiC thin films with excellent properties for M/NEMS applications.

  • PDF

고전압 Power IC 집적을 위한 4H-SiC CMOS 신뢰성 연구 (Reliability Analysis of 4H-SiC CMOS Device for High Voltage Power IC Integration)

  • 강연주;나재엽;김광수
    • 전기전자학회논문지
    • /
    • 제26권1호
    • /
    • pp.111-118
    • /
    • 2022
  • 본 논문에서는 고전압 SiC Power 소자와 집적이 가능한 4H-SiC CMOS에 대해 연구하였다. SiC CMOS 소자 연구를 통해 고출력 SiC Power 소자와 함께 제작을 가능하게 함으로써 SiC 전력소자를 이용하는 고출력 시스템의 효율 및 비용면에서 우수한 성능을 기대할 수 있다. 따라서 4H-SiC 기판에서 CMOS를 설계한 후 TCAD 시뮬레이션을 통해 전기적 특성 및 고온 동작 신뢰성을 비교하였다. 특히 높은 온도에서 신뢰성 있는 동작을 위해 gate dielectric으로 HfO2를 변경함으로써 SiO2보다 열적 특성이 개선됨을 확인하였다.

고온 단결정 3C-SiC 압저항 압력센서 특성 (Characteristics of high-temperature single-crystalline 3C-SiC piezoresistive pressure sensors)

  • 판 투이 탁;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.274-274
    • /
    • 2008
  • This paper describes on the fabrication and characteristics of a 3C-SiC (Silicon Carbide) micro pressure sensor for harsh environment applications. The implemented micro pressure sensor used 3C-SiC thin-films heteroepitaxially grown on SOI (Si-on-insulator) structures. This sensor takes advantages of the good mechanical properties of Si as diaphragms fabricated by D-RIE technology and temperature properties of 3C-SiC piezoresistors. The fabricated pressure sensors were tasted at temperature up to $250^{\circ}C$ and indicated a sensitivity of 0.46 mV/V*bar at room temperature and 0.28 mV/V*bar at $250^{\circ}C$. The fabricated 3C-SiC/SOI pressure sensor presents a high-sensitivity and excellent temperature stability.

  • PDF

다결정 3C-SiC 박막 다이오드의 전기적 특성 (Electrical characteristics of polycrystalline 3C-SiC thin film diodes)

  • 정귀상;안정학
    • 센서학회지
    • /
    • 제16권4호
    • /
    • pp.259-262
    • /
    • 2007
  • This paper describes the electrical characteristics of polycrystalline (poly) 3C-SiC thin film diodes, in which poly 3C-SiC thin films on n-type and p-type Si wafers, respectively, were deposited by APCVD using HMDS, $H_{2}$, and Ar gas at $1150^{\circ}C$ for 3 hr. The schottky diode with Au/poly 3C-SiC/Si (n-type) structure was fabricated. Its threshold voltage ($V_{bi}$), breakdown voltage, thickness of depletion layer, and doping concentration ($N_{D}$) value were measured as 0.84 V, over 140 V, 61 nm, and $2.7{\times}10^{19}cm^{-3}$, respectively. Moreover, for the good ohmic contact, Al/poly 3C-SiC/Si (n-type) structure was annealed at 300, 400, and $500^{\circ}C$, respectively for 30 min under the vacuum condition of $5.0{\times}10^{-6}$ Torr. Finally, the p-n junction diodes fabricated on the poly 3C-Si/Si (p-type) were obtained like characteristics of single 3CSiC p-n junction diode. Therefore, poly 3C-SiC thin film diodes will be suitable for microsensors in conjunction with Si fabrication technology.

탄화규소의 R-curve, 침식 및 마모 특성 (R-curve, erosion and wear of silicon carbide ceramics)

  • 채준혁;조성재;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제27회 춘계학술대회
    • /
    • pp.139-145
    • /
    • 1998
  • This paper addresses the R-curve properties, wear resistance, and erosion resistance of the two silicon carbide ceramics with different microstructures, i.e. , fine grained SiC and in situ-toughened SiC(IST SIC). Fine grained SiC exhibits a relatively flat R-curve behavior whereas the IST SiC exhibits a increasing R-curve behavior. The increasing R-curve behavior in IST SiC is attributed to relatively weak grain boundaries. The rate of material removal during wear tests and erosion tests was higher for IST SiC than that for fine grained SiC. This is attributed to the weaker grain boundaries in IST SiC than that in fine grained SiC. It is implied that fracture toughness in short crack regime should be taken into consideration in the interpretation of the microscopical material removal process. We show that the higher the strength of grain boundaries is, the higher wear and erosion resistances are.

  • PDF

In-situ 도핑량이 다공성 3C-SiC 박막의 특성에 미치는 영향 (Effects of In-situ doping Concentration on the Characteristics of Porous 3C-SiC Thin Films)

  • 김강산;정귀상
    • 한국전기전자재료학회논문지
    • /
    • 제23권6호
    • /
    • pp.487-490
    • /
    • 2010
  • This paper describes the elecrtical and optical characteristics of $N_2$ doped porous 3C-SiC films. Polycrystalline 3C-SiC thin films are anodized by $HF+C_2H_5OH$ solution with UV-LED exposure. The growth of in-situ doped 3C-SiC thin films on p-type Si (100) wafers is carried out by using APCVD (atmospheric pressure chemical vapor deposition) with a single-precursor of HMDS (hexamethyildisilane: $Si_2(CH_3)_6)$. 0 ~ 40 sccm $N_2$ was used for doping. After the growth of doped 3C-SiC, porous 3C-SiC is formed by anodization with $7.1\;mA/cm^2$ current density for anodization time of 60 sec. The average pore diameter is about 30 nm, and etched area is increased with $N_2$ doping rate. These results are attributed to the decrease of crystallinity by $N_2$ doping. Mobility is dramatically decreased in porous 3C-SiC. The band gaps of polycrystalline 3C-SiC films and doped porous 3C-SiC are 2.5 eV and 2.7 eV, respectively.

$Si_3N_4$ 결합 SiC 내화재료에 있어서 생성된 $Si_3N_4$의 미구조 변화 (The Development of Microstructure in $Si_3N_4$-Bonded SiC Refractory)

  • 최덕균;이준근
    • 한국세라믹학회지
    • /
    • 제19권2호
    • /
    • pp.121-126
    • /
    • 1982
  • This paper deals with the $Si_3N_4$-bonded SiC refractory in terms of its microstructure development during nitridation. When mixture of SiC grains and fine Si power is fired under nitrogen atmosphere, an interlocking network of $Si_3N_4$ whiskers is formed by nitridation of Si. It is found that the strength of $Si_3N_4$-bonded SiC refractory is soley due to the physical nature of this interlocking whiskers. At the initial stage of nitridation, $Si_3N_4$ whisker forms in very thin and long shape and, with further nitridation, it becomes thicker with diameters up to 0.35$\mu\textrm{m}$. It is found that the mechanical strength of $Si_3N_4$-bonded SiC refractory depends on the degree of nitridation and the development of microstructure.

  • PDF