• Title/Summary/Keyword: SiC SBD

Search Result 25, Processing Time 0.028 seconds

Effect on Metal Guard Ring in Breakdown Characteristics of SiC Schottky Barrier Diode (금속 가드 링이 SiC 쇼트키 다이오드의 항복전압에 미치는 영향)

  • Kim, Seong-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.877-882
    • /
    • 2005
  • In order to fabricate a high breakdown SiC-SBD (Schottky barrier diode), we investigate an effect on metal guard ring (MGR) in breakdown characteristics of the SiC-SBD. The breakdown characteristics of MGR-type SiC-SBD is significantly dependent on both the guard ring metal and the alloying time of guard ring metal. The breakdown characteristics of MGR-type SiC-SBDs are essentially improved as the alloying time of guard ring metal is increased. The SiC-SBD without MGR shows less than 200 V breakdown voltage, while the SiC-SBD with Al MGR shows approximately 700 V breakdown voltage. The improvement in breakdown characteristics is attributed to the field edge termination effect by the MGR, which is similar to an implanted guard ring-type SiC-SBD. There are two breakdown origins in the MGR-type SiC-SBD. One is due to a crystal defects, such as micropipes and stacking faults, in the Epi-layers and the SiC substrate, and occurs at a lower electric field. The other is due to the destruction of guard ring metal, which occurs at a higher electric field. The demolition of guard ring metal is due to the electric field concentration at an edge of Schottky contact metal.

Potential barrier height of Metal/SiC(4H) Schottky diode (Metal/SiC(4H) 쇼트키 다이오드의 포텐셜 장벽 높이)

  • 박국상;김정윤;이기암;남기석
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.640-644
    • /
    • 1998
  • We have fabricated Sb/SiC(4H) Schottky barrier diode (SBD) of which characteristics compared with that of Ti/SiC(4H) SBD. The donor concentration of the n-type SiC(4H) obtained by capacitance-voltage (C-V) measurement was about $2.5{\times}10 ^{17}{\textrm}cm^{-3}$. The ideality factors of 1.31 was obtained from the slope of forward current-voltage (I-V) characteristics of Sb/SiC(4H) SBD at low current density. The breakdown field of Sb/SiC(4H) SBD under the reverse bias voltage was about $4.4{\times}10^2V$/cm. The built-in potential and the Schottky barrier height (SBH) of Sb/SiC(4H) SBD were 1.70V and 1.82V, respectively, which were determined by the analysis of C-V characteristics. The Sb/SiC(4H) SBH of 1.82V was higher than Ti/SiC(4H) SBH of 0.91V. However, the current density and reverse breakdown field of Sb/SiC(4H) were low as compared with those of Ti/SiC(4H). The Sb/SiC(4H), as well as the Ti/SiC(4H), can be utilized as the Shottky barrier contact for the high-power electronic device.

  • PDF

A Test Circuit for Characterization and Modelling of the Reverse Recovery Power High-Speed Rectifier (SiC SBD의 역회복 특성 분석을 위한 $T_{rr}$ 측정회로의 검토)

  • Seo, Kil-Soo;Kim, Hyeng-Woo;Kim, Snag-Chul;Bahng, Wook;Kim, Nam-Kyun;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.373-376
    • /
    • 2004
  • 전력전자 회로의 고속화에 따라 정류기의 역할은 점차 중요해지고 있다. 전원장치의 compact화 및 초소형화에 따라 스위칭 주파수는 높아지고 있다. 최근 전원장치의 on-line 뿐만 아니라 off-line에서의 효율을 향상시키려면 도통손실 및 스위칭 손실을 최소화를 요구받고 있다. 스위칭 주파수가 증가함에 따라 power rectifier는 도전 및 스위칭 손실의 최소화를 위해서는 스위칭 손실의 주된 원인인 역회복 특성을 잘 파악해야 한다. 이를 위해 본 고에서는 최근 제작된 SiC SBD의 역회복 특성을 분석을 위한 $t_{rr}$, 측정을 위한 $t_{rr}$ Tester를 MIL-STD-750-4031.4에 참고하여 제작하였으며, 제작된 $t_{rr}$ Tester를 이용하여 SiC SBD의 $t_{rr}$의 측정결과에 대해 기술하였다.

  • PDF

A Study on high efficiency Bridgeless PFC Converter applied SiC SBD (SiC SBD 적용한 고효율 Bridgeless PFC 컨버터에 대한 연구)

  • Jeon, Joon-Hyeok;Kim, Hyung-Sik;Kim, Hee-Jun;Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.449-455
    • /
    • 2019
  • This paper proposes a flyback diode of bridgeless PFC converter as SiC SBD (Schottky Barrier Diode) to achieve high efficiency. In addition, through the explanation of the operation principle of the bridgeless PFC converter, the conduction section of the freewheel diode is shown in the bridgeless PFC converter to verify the contribution of system loss due to the loss of the freewheel diode. The advantages of the SiC SBD device's physical properties and the reverse recovery characteristics are explained, and the efficiency is measured by measuring the turn-on and turn-off losses. The loss was calculated. The simulation results were calculated in consideration of device characteristics and verified through the waveform analysis and comparison of the actual system. In order to consider the device characteristics, the simulation was conducted using the thermal module of PSIM. As a result of the prototype test, the turn-on loss was 0.608W and the turn-off loss was 21.62W, resulting in the total switching loss of 22.228W. The comparison of the two results proved the validity of the experimental method. In addition, a high efficiency of 94.58% is achieved.

6.6 kW On-Vehicle Charger with a Hybrid Si IGBTs and SiC SBDs Based Booster Power Module

  • Han, Timothy Junghee;Preston, Jared;Ouwerkerk, David
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.584-591
    • /
    • 2013
  • In this paper, a hybrid booster power module with Si IGBT and Silicon Carbide (SiC) Schottky Barrier Diode (SBDs) is presented. The switching characteristics of the hybrid booster module are compared with commercial Silicon IGBT/Si PIN diode based modules. We applied the booster power module into a non-isolated on board vehicle charger with a simple buck-booster topology. The performances of the on-vehicle charger are analyzed and measured with different power modules. The test data is measured in the same system, at the same points of operation, using the conventional Si and hybrid Si/SiC power modules. The measured power conversion efficiency of the proposed on-vehicle charger is 96.4 % with the SiC SBD based hybrid booster module. The conversion efficiency gain of 1.4 % is realizable by replacing the Si-based booster module with the Si IGBT/SiC SBD hybrid boost module in the 6.6 kW on-vehicle chargers.

Annealing effect of Schottky contact on the characteristics of 1300 V 4H-SiC SBDs (1300 V급 4H-SiC SBDs의 Contact의 특성에 미치는 열처리 효과)

  • 강수창;금병훈;도석주;제정호;신무환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.30-33
    • /
    • 1999
  • 본 연구에서는 Pt/f4-SiC Schottky barrier diodes(SBDs)의 소자 성능향상과 미세구조와의 상관관계를 규명하였다. 다른 열처리 온도구간에 따른 금속/SiC 계면의 미세구조 평가는 X-ray scattering법을 사용하여 분석하였다. 소자의 역 방향 특성은 열처리 온도가 증가함에 따라 저하되었다. As-deposited와 $850^{\circ}C$ 온도에서 열처리된 소자의 최대 항복전압은 각각 1300 V와 626 V 이었다. 그러나, 소자의 순방향 특성은 열처리 온도가 증가함에 따라 향상되었다. X-ray scattering법으로 >$650^{\circ}C$ 이상의 열처리 온도에서는 Pt/SiC 계면에서 Pt-silicides가 형성되었고, 이러한 Silicides의 형성이 Pt/SiC 계면의 평활도를 증가시킨 원인이 됨을 보였다. SBDs의 순방향 특성은 열처리 과정동안 Pt/SiC 계면에서 형성된 silicides의 결정성에 강하게 의존함을 알 수 있었다.

  • PDF

The Impact of N-Ion Implantation on Deep-Level Defects and Carrier Lifetime in 4H-SiC SBDs (N-이온주입이 4H-SiC SBDs의 깊은 준위 결함 및 소수 캐리어 수명에 미치는 영향)

  • Myeong-cheol Shin;Geon-Hee Lee;Ye-Hwan Kang;Jong-Min Oh;Weon Ho Shin;San-Mo Koo
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.556-560
    • /
    • 2023
  • In this study, the impact of Nitrogen implantation process on deep-level defects and lifetime in 4H-SiC Epi surfaces was comparatively analyzed. Deep Level Transient Spectroscopy (DLTS) and Time Resolved Photoluminescence (TR-PL) were employed to measure deep-level defects and carrier lifetime. As-grown Schottky Barrier Diodes (SBDs) exhibited energy levels at 0.16 eV, 0.67 eV, and 1.54 eV, while for implantation SBD, defects at 0.15 eV were observed. This indicates a reduction in defects associated with energy levels Z1/2 and EH6/7, known as lifetime killers, as impurities from nitrogen implantation replace titanium and carbon vacancies.

Electrical Characteristics of the SiC SBD Prepared by using the Facing Targets Sputtering Method (대향 타겟 스퍼터링법으로 제작한 SiC SBD의 전기적 특성)

  • Lee, Jinseon;Kang, Tai Young;Kim, Kyung Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.1
    • /
    • pp.27-30
    • /
    • 2015
  • SiC based Schottky barrier diodes were prepared by using the facing targets sputtering method. In this research, 4H-SiC polytypes of SiC were adopted and Molybdenum, Titanium was employed as the Schottky metal of the metal-semiconductor contacts. Both structures showed the rectifying nature in their forward and reverse J-V characteristic curve and the ideality factors calculated from these plots that were close to unity were represented the nearly ideal behavior. Difference of Schottky barrier height between prepared devices was also corresponding with the electrical characteristics of themselves. Therefore the suitability of the facing targets sputtering method for fabrication of Schottky diodes could be suggested from these results.

Temperature-Dependent Characteristics of SBD and PiN Diodes in 4H-SiC (온도에 따른 4H-SiC에 기반한 SBD, PiN 특성 비교)

  • Seo, Ji-Ho;Cho, Seulki;Lee, Young-Jae;An, Jae-In;Min, Seong-Ji;Lee, Daeseok;Koo, Sang-Mo;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.362-366
    • /
    • 2018
  • Silicon carbide is widely used in power semiconductor devices owing to its high energy gap. In particular, Schottky barrier diode (SBD) and PiN diodes fabricated on 4H-SiC wafers are being applied to various fields such as power devices. The characteristics of SBD and PiN diodes can be extracted from C-V and I-V characteristics. The measured Schottky barrier height (SBH) was 1.23 eV in the temperature range of 298~473 K, and the average ideal factor is 1.17. The results show that the device with the Schottky contact is characterized by the theory of thermal emission. As the temperature increases, the parameters are changed and the Vth is shifted to lower voltages.

Research on operation stability of 7kW Inverter for short distance vehicle using SiC Hybrid module (SiC 하이브리드 모듈을 적용한 근거리용 7kW Inverter 동작 안정성에 대한 연구)

  • Jeon, Joon-Hyeok;Kyoung, Sin-Su;Kim, Hee-Jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.5
    • /
    • pp.499-506
    • /
    • 2019
  • This paper is concerned with the operating stability of 7kW inverter using SIC hybrid module and verifies the validity of the simulation results by comparing the result of the loss equation and the simulation result, Simulation results using Si module and SiC hybrid module are compared to compare switch loss and diode loss. Through the loss equation calculation, the conduction loss of SiC Hybrid module is 168W, switching loss is 9.3W, diode loss is 10.5nW, When compared with the simulation results, similar values were shown. As a result of comparing the simulation results of the Si module and the SiC Hybrid module, The total device loss of the Si module was 246.2W, and the total device loss of the SiC Hybrid module was 189.9W. The loss difference was 56.3W, which was about 0.8W. thereby verifying the reverse recovery characteristics of the SiC SBD. In addition, temperature saturation test was conducted to confirm the stability of SiC Hybrid module and Si module under high temperature saturation, In the case of the Si module, the output power was stopped at 4kW, and the SiC Hybrid module was confirmed to operate at 7kW. Based on this, an efficiency graph and a temperature graph are presented, and the Si module is graphed up to 4kW and the SiC Hybrid module is graphed up to 7kW.