• Title/Summary/Keyword: Si3N4/Ta2O5

Search Result 30, Processing Time 0.03 seconds

Formation of ultra-thin $Ta_{2}O_{5}$ film on thermal silicon nitrides (열적 성장된 실리콘 질화막위에 산화 탄탈륨 초박막의 형성)

  • 이재성;류창명;강신원;이정희;이용현
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.11
    • /
    • pp.35-43
    • /
    • 1995
  • To obtain high quality of $Ta_{2}O_{5}$ film, two dielectric layers of $Si_{3}N_{4}$ and $Ta_{2}O_{5}$ were subsequently formed on Si wafer. Silicon nitride films were thermally grown in 10 Torr ammonia ambient by R.F induced heating system. The thickness of thermally grown $Si_{3}N_{4}$ film was able to be controlled in the range of tens $\AA$ due to the self-limited growth property. $Ta_{2}O_{5}$ film of 200$\AA$ thickness was then deposited on the as-grown $Si_{3}N_{4}$ film about 25$\AA$ thickness by sputtering method and annealed at $900^{\circ}C$in $O_{2}$ ambient for 1hr. Stoichiometry film was prepared by the annealing in oxygen ambient. Despite the high temperature anneal process, silicon oxide layer was not grown at the interface of the layered films because of the oxidation barrier effect of Si$_{3}$N$_{4}$ film. The fabricated $Ta_{2}O_{5}$/$Si_{3}N_{4}$ film showed low leakage current less than several nA and high dielectric breakdown strength.

  • PDF

Light addressable potentiometric penicillin sensor using Ta2O5 sensing membrane (Ta2O5 감지막의 광지시 전위차형 페니실린 센서)

  • Lee, Sun-Young;Jang, Su-Won;Kim, Jae-Ho;Kwon, Dae-Hyuk;Kim, Eung-Soo;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.192-198
    • /
    • 2006
  • In this study, the light addressable potentiometric sensors (LAPS) with $Si_{3}N_{4}/SiO_{2}/Si$, and $Ta_{2}O_{5}/SiO_{2}/Si$ structures were fabricated. The penicillinsae was immobilized on the devices to hydrolyze the penicillin using self-assembled monolayer (SAM) method. Then response characteristics according to the penicillin concentrations were measured and compared. The measuring system was simplified by using LabVIEW. The pH response characteristics of fabricated devices are 56 mV/pH ($Si_{3}N_{4}$ sensing membrane) and 61 mV/pH ($Ta_{2}O_{5}$ sensing membrane). The sensitivity of sensor by enzyme reaction result of the enzyme reaction were 60 mV/decade and 74 mV/decade for $Si_{3}N_{4}/SiO_{2}/Si$ and $Ta_{2}O_{5}/SiO_{2}/Si$ structure, respectively, in the range of $0.1\;mM{\sim}10\;mM $of the penicillin concentration.

Thermal Treatment Effects of Staggered Tunnel Barrier(Si3N4/Ta2O5) for Non Volatile Memory Applications

  • Lee, Dong-Hyeon;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.159-160
    • /
    • 2012
  • 지난 30년 동안 플래시 메모리의 주류 역할을 하였던 부유 게이트 플래시 메모리는 40 nm 기술 노드 이하에서 셀간 간섭, 터널 산화막의 누설전류 등에 의한 오동작으로 기술적 한계를 맞게 되었다. 또한 기존의 비휘발성 메모리는 동작 시 높은 전압을 요구하므로 전력소비 측면에서도 취약한 단점이 있다. 그러나 이러한 문제점들을 기존의 Si기반의 소자기술이 아닌 새로운 재료나 공정을 통해서 해결하려는 연구가 최근 활발하게 진행되고 있다. 특히, 플래시 메모리의 중요한 구성요소의 하나인 터널 산화막은 메모리 소자의 크기가 줄어듦에 따라서 SiO2단층 구조로서는 7 nm 이하에서 stress induced leakage current (SILC), 직접 터널링 전류의 증가와 같은 많은 문제점들이 발생한다. 한편, 기존의 부유 게이트 타입의 메모리를 대신할 것으로 기대되는 전하 포획형 메모리는 쓰기/지우기 속도를 향상시킬 수 있으며 소자의 축소화에도 셀간 간섭이 일어나지 않으므로 부유 게이트 플래시 메모리를 대체할 수 있는 기술로 주목받고 있다. 특히, TBM (tunnel barrier engineered memory) 소자는 유전율이 큰 절연막을 적층하여 전계에 대한 터널 산화막의 민감도를 증가시키고, 적층된 물리적 두께의 증가에 의해 메모리의 데이터 유지 특성을 크게 개선시킬 수 있는 기술로 관심이 증가하고 있다. 본 연구에서는 Si3N4/Ta2O5를 적층시킨 staggered구조의 tunnel barrier를 제안하였고, Si기판 위에 tunnel layer로 Si3N4를 Low Pressure Chemical Vapor Deposition (LPCVD) 방법과 Ta2O5를 RF Sputtering 방법으로 각각 3/3 nm 증착한 후 e-beam evaporation을 이용하여 게이트 전극으로 Al을 150 nm 증착하여 MIS- capacitor구조의 메모리 소자를 제작하여 동작 특성을 평가하였다. 또한, Si3N4/Ta2O5 staggered tunnel barrier 형성 후의 후속 열처리에 따른 전기적 특성의 개선효과를 확인하였다.

  • PDF

The Study on Dielectric Property and Thermal Stability of $Ta_2O_{5}$ Thin-films ($Ta_2O_{5}$ 커패시터 박막의 유전 특성과 열 안정성에 관한 연구)

  • Kim, In-Seong;Lee, Dong-Yun;Song, Jae-Seong;Yun, Mu-Su;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.5
    • /
    • pp.185-190
    • /
    • 2002
  • Capacitor material utilized in the downsizing passive devices and dynamic random access memory(DRAM) requires the physical and electrical properties at given area such as capacitor thickness reduction, relative dielectric constant increase, low leakage current and thermal stability. Common capacitor materials, $SiO_2$, $Si_3N_4$, $SiO_2$/$Si_3N_4$,TaN and et al., used until recently have reached their physical limits in their application to several hundred angstrom scale capacitor. $Ta_2O_{5}$ is known to be a good alternative to the existing materials for the capacitor application because of its high dielectric constant (25 ~35), low leakage current and high breakdown strength. Despite the numerous investigations of $Ta_2O_{5}$ material, there have little been established the clear understanding of the annealing effect on capacitance characteristic and conduction mechanism, design and fabrication for $Ta_2O_{5}$ film capacitor. This study presents the structure-property relationship of reactive-sputtered $Ta_2O_{5}$ MIM capacitor structure processed by annealing in a vacuum. X-ray diffraction patterns skewed the existence of amorphous phase in as-deposited condition and the formation of preferentially oriented-$Ta_2O_{5}$ in 670, $700^{\circ}C$ annealing. On 670, $700^{\circ}C$ annealing under the vacuum, the leakage current decrease and the enhanced temperature-capacitance characteristic stability. and the leakage current behavior is stable irrespective of applied electric field. The results states that keeping $Ta_2O_{5}$ annealed at vacuum gives rise to improvement of electrical characteristics in the capacitor by reducing oxygen-vacancy and the broken bond between Ta and O.

Magnetic Properties of Spin Valve Ta Underlayer Depending on N2 Concentration and Annealing Temperature (스핀 밸브 Ta 하지층의 질소함유량 변화와 열처리 온도에 따른 자기적 특성)

  • Choi, Yeon-Bong;Kim, Ji-Won;Jo, Soon-Chul;Lee, Chang-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.4
    • /
    • pp.226-230
    • /
    • 2005
  • In this research, magnetic properties and annealing effects of the spin valve structures were investigated, which have Ta underlayer deposited with Ar and $N_2$ gas mixture. Also, TaN underlayer as a diffusion barrier and the substrate were investigated. The structure of the spin valve was Si($SiO_2$)/Ta(TaN)/NiFe/CoFe/Cu/CoFe/FeMn/Ta. Deposition rate was decreased and resistivity and roughness of the TaN films were increased as the $N_2$ gas flow was increased. The XRD results after high temperature annealing showed that Silicides were created in Si/Ta layer, but not in Si/TaN layer. Magnetoresistance ratio (MR) and exchange coupling field ($H_{ex}$) were decreased when the $N_2$ gas flow was increased over 4.0 sccm. The MR of the spin valves with Ta and TaN films deposited with up to 4.0 sccm of $N_2$ gas flow was increased about $0.5\%$ until the annealing temperature of up to $200^{\circ}C$ and then, decreased. TaN film deposited with 8.0 sccm of $N_2$ gas flow showed twice the adhesion of the Ta film. The above results indicate that with 3.0 sccm of $N_2$ gas flow during the Ta underlayer deposition, the magnetic properties of the spin valves are maintained, while the underlayer may be used as a diffusion barrier and the adhesion between the Si substrate and the underlayer is increased.

Characteristics of TaN Film as to Cu Barrier by PAALD Method (PAALD 방법을 이용한 TaN 박막의 구리확산방지막 특성)

  • 부성은;정우철;배남진;권용범;박세종;이정희
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.2
    • /
    • pp.5-8
    • /
    • 2003
  • In this study, as Cu diffusion barrier, tantalum nitrides were successfully deposited on Si(100) substrate and $SiO_2$ by plasma assisted atomic layer deposition(PAALD) and thermal ALD, using pentakis (ethylmethlyamino) tantalum (PEMAT) and NH$_3$ as precursors. The TaN films were deposited at $250^{\circ}C$ by both method. The growth rates of TaN films were 0.8${\AA}$/cycle for PAALD and 0.75${\AA}$/cycle for thermal ALD. TaN films by PAALD showed good surface morphology and excellent step coverage for the trench with an aspect ratio of h/w -1.8:0.12 mm but TaN films by thermal ALD showed bad step coverage for the same trench. The density for PAALD TaN was 11g/cmand one for thermal ALD TaN was 8.3g/$cm^3$. TaN films had 3 atomic % carbon impurity and 4 atomic % oxygen impurity for PAALD and 12 atomic % carbon impurity and 9 atomic % oxygen impurity for thermal ALD. The barrier failure for Cu(200 nm)/TaN(10 nm)/$SiO_2$(85 nm)/ Si structure was shown at temperature above $700^{\circ}C$ by XRD, Cu etch pit analysis.

  • PDF

A Study on Electrical Properties of $Ta_2O_{5-x}$ Thin-films Obtained by $O_2$ RTA ($O_2$RTA 방법으로 제조된 $Ta_2O_{5-x}$ 박막의 전기적 특성)

  • Kim, In-Seong;Song, Jae-Seong;Yun, Mun-Su;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.8
    • /
    • pp.340-346
    • /
    • 2002
  • Capacitor material utilized in the downsizing passive devices and integration of passive devices requires the physical and electrical properties at given area such as capacitor thickness reduction, relative dielectric constant increase, low leakage current and thermal stability. common capacitor materials, $Al_2O_3$, $SiO_2$, $Si_3N_4$, $SiO_2$/$Si_3N_4$, TaN and et al., used until recently have reached their physical limits in their application to integration of passive devices. $Ta_2O_{5}$ is known to be a good alternative to the existing materials for the capacitor application because of its high dielectric constant (25~35), low leakage current and high breakdown strength. Despite the numerous investigations of $Ta_2O_{5}$ material, there have little been established the clear understanding of the annealing effect on capacitance characteristic and conduction mechanism. This study presents the dielectric properties $Ta_2O_{5}$ MIM capacitor structure Processed by $O_2$ RTA oxidation. X-ray diffraction patterns showed the existence of amorphous phase in $600^{\circ}C$ annealing under the $O_2$ RTA and the formation of preferentially oriented-$Ta_2O_{5}$ in 650, $700^{\circ}C$ annealing and the AES depth profile showed $O_2$ RTA oxidation effect gives rise to the $O_2$ deficientd into the new layer. The leakage current density respectively, at 3~1l$\times$$10_{-2}$(kV/cm) were $10_{-3}$~$10_{-6}$(A/$\textrm{cm}^2$). In addition, behavior is stable irrespective of applied electric field. the frequency vs capacitance characteristic enhanced stability more then $Ta_2O_{5}$ thin films obtained by $O_2$ reactive sputtering. The capacitance vs voltage measurement that, Vfb(flat-band voltage) was increase dependance on the $O_2$ RTA oxidation temperature.

In-situ Synchrotron Radiation Photoemission Spectroscopy Study of Atomic Layer Deposition of $Ta_2O_5$ film on Si Substrate with Ta(NtBu)(dmamp)$_2Me$ and $H_2O$

  • Lee, Seung Youb;Jung, Woosung;Kim, Yooseok;Kim, Seok Hwan;An, Ki-Seok;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.619-619
    • /
    • 2013
  • The interfacial state between $Ta_2O_5$ and a Si substrate during the growth of $Ta_2O_5$ films by atomic layer deposition (ALD) was investigated using in-situ synchrotron radiation photoemission spectroscopy (SRPES). A newly synthesized liquid precursor Ta($N^tBu$) $(dmamp)_2Me$ was used as the metal precursor, with Ar as a purging gas and $H_2O$ as the oxidant source. After each half reaction cycle, samples were analyzed using in-situ SRPES under ultrahigh vacuum at room temperature. SRPES analysis revealed that Ta suboxide and Si dioxide were formed at the initial stages of $Ta_2O_5$ growth. However, the Ta suboxide states almostdisappeared as the ALD cycles progressed. Consequently, the $Ta^{5+}$ state, which corresponds with the stoichiometric $Ta_2O_5$, only appeared after 4.0 cycles. Additionally, tantalum silicate was not detected at the interfacial states between $Ta_2O_5$ and Si. The measured valence band offset between $Ta_2O_5$ and the Si substrate was 3.22 eV after 3.0 cycles.

  • PDF

Electrical and Chemical Properties of ultra thin RT-MOCVD Deposited Ti-doped $Ta_2O_5$

  • Lee, S. J.;H. F. Luan;A. Mao;T. S. Jeon;Lee, C. h.;Y. Senzaki;D. Roberts;D. L. Kwong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.4
    • /
    • pp.202-208
    • /
    • 2001
  • In Recent results suggested that doping $Ta_2O_5$ with a small amount of $TiO_2$ using standard ceramic processing techniques can increase the dielectric constant of $Ta_2O_5$ significantly. In this paper, this concept is studied using RTCVD (Rapid Thermal Chemical Vapor Deposition). Ti-doped $Ta_2O_5$ films are deposited using $TaC_{12}H_{30}O_5N$, $C_8H_{24}N_4Ti$, and $O_2$ on both Si and $NH_3$-nitrided Si substrates. An $NH_3$-based interface layer at the Si surface is used to prevent interfacial oxidation during the CVD process and post deposition annealing is performed in $H_2/O_2$ ambient to improve film quality and reduce leakage current. A sputtered TiN layer is used as a diffusion barrier between the Al gate electrode and the $TaTi_xO_y$ dielectric. XPS analyses confirm the formation of a ($Ta_2O_5)_{1-x}(TiO_2)_x$ composite oxide. A high quality $TaTi_xO_y$ gate stack with EOT (Equivalent Oxide Thickness) of $7{\AA}$ and leakage current $Jg=O.5A/textrm{cm}^2$ @ Vg=-1.0V has been achieved. We have also succeeded in forming a $TaTi_x/O_y$ composite oxide by rapid thermal oxidation of the as-deposited CVD TaTi films. The electrical properties and Jg-EOT characteristics of these composite oxides are remarkably similar to that of RTCVD $Ta_2O_5, suggesting that the dielectric constant of $Ta_2O_5$ is not affected by the addition of $TiO_2$.

  • PDF

Characteristics of $_{(1-x)}Ta_2O_{5-x}TiO_2$ thin film at various annealing temperature by CVD (CVD법으로 제작한 $_{(1-x)}Ta_2O_{5-x}TiO_2$ 박막의 열처리 온도에 따른 특성변화)

  • 강필규;진정근;강호재;노대호;안재우;변동진
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.171-171
    • /
    • 2003
  • 공정기술의 향상으로 DRAM(dynamic random acess memory)의 고집적화가 이루어지고 있으며, 각 개별소자 및 셀 영역의 점유면적의 감소가 요구되어지고 있다. 따라서 기존에 사용하던 NO (Si$_3$N$_4$/SiO$_2$)박막보다 유전율이 높은 고유전물질에 대한 연구가 진행되고 있다. Ta$_2$O$_{5}$, $Y_2$O$_3$, HfO$_2$, ZrO$_2$,Nb$_2$O$_{5}$, BaTiO$_3$, SrTiO$_3$ 및 (BaSr)TiO등이 고유전물질로 연구되고 있는데 그 중 공정의 안정성, 누설전류의 우수성으로 인해 Ta$_2$O$_{5}$이 많이 연구되고 있다. 본 실험에서는 TiO$_2$가 8 mol%가 첨가된 Ta$_2$O$_{5}$의 열처리 온도에 따른 전기적, 유전특성을 살펴보려고 한다살펴보려고 한다

  • PDF