• Title/Summary/Keyword: Si-$CH_3$ bond

Search Result 21, Processing Time 0.013 seconds

Generation of Si-O-C Bond without Si-$CH_3$ Bond in Hybrid Type SiOC Film

  • Oh, Teresa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.1-4
    • /
    • 2008
  • The chemical shift of SiOC film was observed according to the flow rate ratio. SiOC film had the broad main band of $880\sim1190cm^{-1}$ and the sharp Si-$CH_3$ bond at $1252cm^{-1}$, and the peak position of the main bond in the infrared spectra moved to high frequency according to the increasing of an BTMSM flow rate. So the increment of the alkyl group induced the C-H bond condensation in the film, and shows the blueshift in the infrared spectra. In the case of P5000 system of Applied Materials Corporation, the strong bond of Si-CH3 bond in precursor does not enough to dissociated and ionized, because low plasma energy due to the capactive coupled CVD. Therefore, there was the sharp peak of Si-$CH_3$ bond at $1252cm^{-1}$.

  • PDF

Physical Properties of Thin Films Generated by Two Kinds of Different Function (2가지 서로 다른 기능에 의해 생성된 박막의 물리적인 특성의 기원)

  • Oh, Teresa
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.487-488
    • /
    • 2008
  • SiOC films containing alkyl groups have a low dielectric constant because of the interaction between the C-H hydrogen bonds and the oxygen of high electro-negative atom. The Si-$CH_3$ in a void is broken by the $O_2$, therefore the strength of CH bond in Si-O-O-$CH_3$ bond increases. The Si-O-O-$CH_3$ bond is broken by nucleophilic attack due to Si atom, again. The elongation of C-H bond causes the red shift, and the compression of C-H bond causes the blue shift. Among these chemical shifts, the blue shift from $1000\;cm^{-1}$ to $1250\;cm^{-1}$ was related with the formation of pores. If the oxygen is deficient condition, the methylradicals of the electron-rich substitution group terminate easily the Si-O-Si cross-link, and the pore is originated from the cross-link breakdown due to much methyl radicals of Si-$CH_3$. The dielectric constant of the films decreases due to pore generation.

  • PDF

Relationship between Dielectric Constant and Increament of Si-O bond in SiOC Film (SiOC 박막에서 Si-O 결합의 증가와 유전상수의 관계)

  • Oh, Teresa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4468-4472
    • /
    • 2010
  • SiOC films made by the inductively coupled plasma chemical vapor deposition were researched the relationship between the dielectric constant and the chemical shift. SiOC film obtained by plasma method had the main Si-O-C bond with the molecule vibration mode in the range of $930{\sim}1230\;cm^{-1}$ which consists of C-O and Si-O bonds related to the cross link formation according to the dissociation and recombination. The C-O bond originated from the elongation effect by the neighboring highly electron negative oxygen atoms at terminal C-H bond in Si-$CH_3$ of $1270cm^{-1}$. However, the Si-O bond was formed from the second ionic sites recombined after the dissociation of Si-$CH_3$ of $1270cm^{-1}$. The increase of the Si-O bond induced the redshift as the shift of peak in FTIR spectra because of the increase of right shoulder in main bond. These results mean that SiOC films become more stable and stronger than SiOC film with dominant C-O bond. So it was researched that the roughness was also decreased due to the high degree of amorphous structure at SiOC film with the redshift after annealing.

Study on the nucleophilic reaction on Orgniac Thin Films (유기물 박막에서 일어나는 친핵성 반응에 대한 연구)

  • Oh, Teresa;Kim, Hong-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.170-171
    • /
    • 2006
  • The chemical shift of SiOC film was observed according to the flow rate ratio. SiOC film has the broad main band of $880{\sim}1190cm^{-1}$ and the sharp Si-$CH_3$ bond at $1252cm^{-1}$, and the infrared spectra in the Si-O-C bond moved to low frequency according to the increasing of an oxygen flow rate. The chemical shift affected the carbon content in the SiOC film, and the decreasing of carbon atoms elongated the C-H bonding length, relatively. The main bond without the sharp Si-$CH_3$ bond at $1252cm^{-1}$ consisted of Si-C, C-O and Si-O bonds, and became the bonding structure of the Si-O-C bond.

  • PDF

A Kinetic Study of Br Atom Reactions with Trimethylsilane by the VLPR (Very Low Pressure Reactor) Technique$^1$

  • Choo Kwang Yul;Choe Mu Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.4
    • /
    • pp.196-202
    • /
    • 1985
  • A Very Low Pressure Reactor (VLPR) is constructed for the kinetic study of atom-molecule bimolecular elementary reactions. The basic principles and the versatility of the method are described. By using the VLPR technique the forward (k1) and the reverse (k-1) rate constants for Br atom reaction with trimethylsilane are studied; Br + $(CH_3)_3$SiH k1 ${\leftrightarrow}$ k-1 HBr + $(CH_3)_3$Si. From the kinetic data and the entropy estimation the bond dissociation energy for Si-H bond in trimethylsilane is calculated to be 90.1 kcal/mole $({\pm}1.1$ kcal/mole). The Arrhenius parameters for k1 are found to be log A = 10.6 l/mole·sec, $E_a$ = 4.4 kcal/mole respectively. For the comparison purpose analogous reaction for carbon compound ; Br + $(CH_3)_3$CH ${\rightarrow}$ HBr + $(CH_3)_3$C was also studied. The corresponding rate constant and equilibrium constant at $25^{\circ}C$ are found to be 2.67 ${\times}$ $10^6l$/mole${\cdot}$sec and 160 respectively.

Studies on the Oxidative Addition Reactions of 1-Bromosilatranes to $SnBr_2$ (1-브로모실라트란의 $SnBr_2$ 에 대한 산화성 첨가반응 연구)

  • Kim, Myeong Un;Eo, Dong Seon;Sin, Ho Cheol;Kim, Jin Gwon;Do, Young Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.3
    • /
    • pp.241-245
    • /
    • 1994
  • The oxidative addition reaction has been employed to synthesize heteropolynuclear compounds containing Si-M bonding interaction between the silicon atom of silatrane, pentacoordinate silicon derivative with transannular Si-N dative bond, and the main group element. The reaction of $SnBr_2 with 1-bromosilatrane(1a) in acetonitrile gives the mixture of yellow(2a) and white(2b) solids which were isolated and charaterized by ^1H-NMR, ^{29}Si-NMR, ^{119}Sn-NMR and Mass spectroscopy. The yellow compound was characterized as 1-tribromotinsilatrane which had Si-Sn bonding interaction. The reaction of SnBr2 with 1-bromo-3,7,10-trimethylsilatrane(1b) in methanol gives the Sn(Ⅳ) complex, N[CH_2CH(CH_3)O]_3SiSnBr_3(CH_3OH)_2(3),$ which was characterized by various means.

  • PDF

Synthesis of Tris(silyl)methanes by Modified Direct Process

  • Lee, Chang Yeop;Han, Jun Su;Yu, Bok Ryeol;Jeong, Il Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.959-968
    • /
    • 2000
  • Direct reaction of elemental silicon with a mixture of (dichloromethyl)silanes 1 $[Cl_3-nMenSiCHCl_2:$ n = 0 (a), n = 1(b), n = 2(c), n = 3(d)] and hydrogen chloride has been studied in the presence of copper catalyst using a stirred bed reactor equ ipped with a spiral band agitator at various temperatures from $240^{\circ}C$ to $340^{\circ}C.$ Tris(si-lyl) methanes with Si-H bonds, 3a-d $[Cl_3-nMenSiCH(SiHCl_2)_2]$, and 4a-d $[Cl_3-nMenSiCH(SiHCl_2)(SiCl_3)]$, were obtained as the major products and tris(silyl)methanes having no Si-H bond, 5a-d $[Cl_3-nMenSiCH(SiCl_3)_2]$, as the minor product along with byproducts of bis(chlorosilyl)methanes, derived from the reaction of silicon with chloromethylsilane formed by the decomposition of 1. In addition to those products, trichlorosilane and tetra-chlorosilane were produced by the reaction of elemental silicon with hydrogen chloride. The decomposition of 1 was suppressed and the production of polymeric carbosilanes reduced by adding hydrogen chloride to 1. Cad-mium was a good promoter for and the optimum temperature for this direct synthesis was $280^{\circ}C$.

Search for Adsorption Coordination of SiH4 or Al(CH3)3 on Si (001) Surface Using Genetic Algorithm and Density Functional theory (유전 알고리즘과 밀도 범함수 이론을 이용한 Si (001) 표면에서의 SiH4 또는 Al(CH3)3 전구체의 흡착 배위 탐색)

  • Kim, Hyun-Kyu;Kim, Jason;Kim, Yeong-Cheol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.16-22
    • /
    • 2021
  • We search for an appropriate initial adsorption coordination of precursor on surface by using genetic algorithm (GA) and density functional theory. SiH4 and Al(CH3)3 as precursor, and OH-terminated Si (001) as surface are used for this study. Selection, crossover, and mutation as hyperparameters of GA are applied to search for the adsorption coordination of the precursors on the surface as a function of generation. Bond distances between precursors and the surface are used to explain the adsorption behavior of the precursors.

Annealing effects of organic inorganic hybrid silica material with C-H hydrogen bonds (C-H 수소결합을 갖는 유무기 하이브리드 물질에서의 열처리 효과)

  • Oh, Teresa
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.20-25
    • /
    • 2007
  • In this paper, It was reported the dielectric constant in organic inorganic hybrid silica material such as SiOC film modeling of bond structure by annealing in organic properties. The organic inorganic hybrid silica material were deposited using bis-trimethylsilymethane (BTMSM, [(CH3)3Si]2CH2) and oxygen gas precursor by a plasma chemical vapor deposition (CVD). The organic inorganic hybrid silica material have three types according to the deposition condition. The dielectric constant of the films were performed MIS(Al/Si-O-C film/p-Si) structure. The C 1s spectra in organin inorganic silica materials with the flow rate ratio of O2/BTMSM=1.5 was organometallic carbon with the peak 282.9 eV by XPS. It means that organometallic carbon component is the cross-link bonding structure with good stability. The dielectric constant was the lowest at annealed films with cross-link bonding structure.