• Title/Summary/Keyword: Si substrate

Search Result 2,843, Processing Time 0.031 seconds

The Dependence of Substrate on Ag Photodoping into Amorphous GeSe Thin Films using Holographic Method (비정질 GeSe 박막으로의 은-광도핑에 대한 기판의존성)

  • Yeo, Jong-Bin;Yun, Sang-Don;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.852-858
    • /
    • 2007
  • The dependence of substrate on the Ag photodoping phenomenon into amonhous $({\alpha}-)$ GeSe thin film has been investigated using holographic method. A 442 nm HeCd laser was utilized as a light source for the holographic exposure and a 632.8 nm HeNe laser to measure the variation of diffraction efficiency $(\eta)$ in real time. The films (Ag and ${\alpha}-GeSe$) were thermally deposited on the substrates, i.e. p-type Si(100), n-type Si(100) and slide glass. The sample structures prepared were two types: type I (Ag/${\alpha}$-SeGe/substrate) and type II (${\alpha}$-SeGe/Ag/substrate). The $\eta$ kinetics comprised to be three steps in which $\eta$ initially increases, is saturated to be maximized $(\eta_M)$, and then decreases relatively gradually. For the same substrate, the $\eta_M$ values of the type II were higher than those of type I. In addition, the type II exhibited the highest $\eta_M$ for p-type Si substrate, while that in type I was observed for n-type Si substrate. These tendency is explained by the diffusion of minority carrier in the films and the change of magnitude and direction in internal fields generated at the film interfaces. Atomic-force-microscope (AFM) was used to observe relief-type grating patterns.

Precise Determination of the Complex Refractive Index and Thickness of a Very Weakly Absorbing Thin Film on a Semi-transparent Substrate Using Reflection Ellipsometry and Transmittance Analysis (반사 타원법과 투과율 분석법을 사용한 반투명 기층 위 매우 약한 광흡수 박막의 두께와 복소굴절률 정밀 결정)

  • Sang Youl Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Explicit expressions for the transmission pseudo-ellipsometric constants and transmittance of a semi-transparent glass substrate coated with thin films are presented to determine the optical constants of a very weakly absorbing thin film coated on a glass substrate. The intensity of the multiply reflected light inside the semi-transparent substrate is superposed incoherently and the light absorption by the substrate is properly treated, so that modeling analysis of thin films coated on a semi-transparent substrate can be performed with increased accuracy. The extinction coefficient derived from transmittance analysis is compared to that from ellipsometric analysis in the weakly absorbing region, and the difference between the two extinction coefficients is discussed in relation to the sensitivities of the transmittance and ellipsometric constants. This transmittance analysis, together with ellipsometric analysis, is applied to a glass substrate coated with a SiN thin film, and it is shown that the thickness and complex refractive index of the SiN thin film can be determined accurately, even though the extinction coefficient is very small.

Structural Properties of (Ba,Sr)TiO$_3$ Thin Films with Substrate Temperature (기판온도에 따른 (Ba,Sr)TiO$_3$ 박막의 구조적 특성)

  • 이상철;임성수;정장호;배선기;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.649-652
    • /
    • 1999
  • The (Ba, Sr)TiO$_3$(BST) thin films were fabricated on Pt/Ti/SiO$_2$/Si substrate by RF sputtering technique. The structural properties of the BST thin films were investigated with substrate temperature by XRD, SEM, EDS and AES depth profils. Increasing the substrate temperature, barium multi titanate phases were decreased. The BST thin film had a structure of perovskite type, and had peaks of (100), (200) at the substrate temperature of 50$0^{\circ}C$. When the BST thin films were deposited at the substrate temperature of 50$0^{\circ}C$, the composition ratio of Ba/sr was 52/48.

  • PDF

Characteristic of Zr(Si)N film as a diffusion barrier between Cu metal and Si substrate (Cu 금속과 Si 기판 사이에서 확산방지막으로 사용하기 위한 Zr(Si)N 박막의 특성)

  • 김좌연;조병철;채상훈;김헌창;박경순
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.6
    • /
    • pp.283-287
    • /
    • 2002
  • We have studied Zr(Si)N film as a diffusion barrier between Cu metal and Si substrate for application of interconnection metal in ULSI circuits. Zr(Si)N film was deposited with reactive DC magnetron sputtering system using $Ar/N_2$mixed gas. The value of the resistivity was the lowest for the ZrN film using 29 : 1 of Ar : $N_2$reactant gas ratio at room temperature and decreased with increasing of Si substrate temperature. As the value of ZrN film resistivity was decreased, the direction of crystal growth was toward to (002) plane. The barrier property of ZrN film added with Si was improved. But Si was added too much in ZrN film, the barrier property was degraded. The adhesive property was improved with increasing of Si in ZrN. For the analysis of the film, XRD, Optical microscopy, Scretch tester, so on were used.

Analysis of Electronic Materials Using Transmission Electron Microscopy (TEM) (전자현미경을 이용한 전자재료분석)

  • Kim, Ki-Bum
    • Applied Microscopy
    • /
    • v.24 no.4
    • /
    • pp.132-144
    • /
    • 1994
  • The application of TEM in investigating the evolution of microstructure during solid phase crystallization of the amorphous Si, $Si_{1-x}Ge_x,\;and\;Si_{1-x}Ge_x/Si$ films deposited on $SiO_2$ substrate, in identifying the failure mechanism of the TiN barrier layer in the Cu-metallization scheme, and in comparing the microstructure of the as-deposited Cu-Cr and Cu-Ti alloy films are discussed. First, it is identified that the evolution of microstructure in Si and $Si_{1-x}Ge_x$ alloy films strongly depends on the concentration of Ge in the film. Second, the failure mechanism of the TiN diffusion barrier in the Cu-metallization is the migration of the Cu into the Si substrate, which results in the formation of a dislocation along the Si {111} plane and precipitates (presumably $Cu_{3}Si$) around the dislocation. Finally, the microstructure of the as-deposited Cu-Cr and Cu-Ti alloy films is also quite different in these two cases. From these several cases, we demonstrate that the information which we obtained using TEM is critical in understanding the behavior of materials.

  • PDF

Physical and Chemical Investigation of Substrate Temperature Dependence of Zirconium Oxide Films on Si(100)

  • Chun, Mi-Sun;Moon, Myung-Jun;Park, Ju-Yun;Kang, Yong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2729-2734
    • /
    • 2009
  • We report here the surface behavior of zirconium oxide deposited on Si(100) substrate depending on the different substrate temperatures. The zirconium oxide thin films were successfully deposited on the Si(100) surfaces applying radio-frequency (RF) magnetron sputtering process. The obtained zirconium oxide films were characterized by X-ray photoelectron spectroscopy (XPS) for study about the chemical environment of the elements, X-ray diffraction (XRD) for check the crystallinity of the films, spectroscopic ellipsometry (SE) technique for measuring the thickness of the films, and the morphology of the films were investigated by atomic force microscope (AFM). We found that the oxidation states of zirconium were changed from zirconium suboxides ($ZrO_{x,y}$, x,y < 2) (x; higher and y; lower oxidation state of zirconium) to zirconia ($ZrO_2$), and the surface was smoothed as the substrate temperature increased.

Diamond Film Deposition on Ceramic Substrates by Hot-Filament CVD and Evaluation of the Adhesion (HF-CVD법에 의한 세라믹스 기판에의 다이아몬드박막 합성과 그 밀착성 평가)

  • Sin, Sun-Gi;Matsubara, Hideaki
    • Korean Journal of Materials Research
    • /
    • v.10 no.8
    • /
    • pp.575-580
    • /
    • 2000
  • Diamond thin films were deposited on $Si_3N_4$, SiC, TiC and $Al_2O_3$, substrates by the CVD method using Ta(TaC)Filament, and the appearance of the diamond films and their adhesion properties were examined by SEM, optical microscopy, indentation test and compression topple test. Diamond films were deposited at lower $CH_4$ concentration than 5%$CH_4$ for all kinds of the substrate material, but graphitic(amorphous)carbon was observed at 10%$CH_4$. The diamond film of about $12\mu\textrm{m}$ thickness on WC substrate partly peeled off, but the film on $Si_3N_4$ substrate held good adhesion. The indentation test showed that roughly ground surface was very effective for adhesion of diamond films to substrate. The topple test revealed that film thickness was an important factor governing the adhesion of the diamond film.

  • PDF

Improvement in Capacitor Characteristics of Titanium Dioxide Film with Surface Plasma Treatment (플라즈마 표면 처리를 이용한 TiO2 MOS 커패시터의 특성 개선)

  • Shin, Donghyuk;Cho, Hyelim;Park, Seran;Oh, Hoonjung;Ko, Dae-Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.32-37
    • /
    • 2019
  • Titanium dioxide ($TiO_2$) is a promising dielectric material in the semiconductor industry for its high dielectric constant. However, for utilization on Si substrate, $TiO_2$ film meets with a difficulty due to the large leakage currents caused by its small conduction band energy offset from Si substrate. In this study, we propose an in-situ plasma oxidation process in plasma-enhanced atomic layer deposition (PE-ALD) system to form an oxide barrier layer which can reduce the leakage currents from Si substrate to $TiO_2$ film. $TiO_2$ film depositions were followed by the plasma oxidation process using tetrakis(dimethylamino)titanium (TDMAT) as a Ti precursor. In our result, $SiO_2$ layer was successfully introduced by the plasma oxidation process and was used as a barrier layer between the Si substrate and $TiO_2$ film. Metal-oxide-semiconductor ($TiN/TiO_2/P-type$ Si substrate) capacitor with plasma oxidation barrier layer showed improved C-V and I-V characteristics compared to that without the plasma oxidation barrier layer.

Pore Structure Modification and Characterization of Porous Cordierite with Chemical Vapor Infiltration (CVI) SiC Whisker (화학증착 탄화규소 휘스커에 의한 다공성 코디어라이트의 기공구조 개질 및 특성평가)

  • Kim, Ik-Whan;Kim, Jun-Gyu;Lee, Hwan-Sup;Choi, Doo-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.2
    • /
    • pp.132-137
    • /
    • 2008
  • The main purpose of this study is enhancing the filtering efficiency, performance and durability of filter by growing SiC whiskers on cordierite honeycomb substrate. The experiment was performed by Chemical Vapor Infiltration (CVI) in order to control pore morphology of substrate. Increasing the mechanical strength of porous substrate is one of important issues. The formation of "networking structure" in the pore of porous substrate increased mechanical strength. The high pressure gas injection to the specimen showed that a little of whiskers were separated from substrate but additional film coating enhanced the stability of whisker at high pressure gas injection. Particle trap test was performed. More nano-particle was trapped by whisker growth at the pore of substrate. Therefore it is expected that the porous cordierite which deposited the SiC whisker will be the promising material for the application as filter trapping the nano-particles.

Laser crystallization of Si film for poly-Si thin film transistor on plastic substrates

  • Kwon, Jang-Yeon;Cho, Hans-S;Kim, Do-Young;Park, Kyung-Bae;Jung, Ji-Sim;Park, Young-Soo;Lee, Min-Chul;Han, Min-Koo;Noguchi, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.957-961
    • /
    • 2004
  • In order to realize high performance thin film transistor (TFT) on plastic substrate, Si film was deposited on plastic substrate at 170$^{\circ}C$ by using inductivity coupled plasma chemical vapor deposition (ICPCVD). Hydrogen concentration in as-deposited Si film was 3.8% which is much lower than that in film prepared by using conventional plasma enhanced chemical vapor deposition (PECVD). Si film was deposited as micro crystalline phase rather than amorphous phase even at 170$^{\circ}C$ because of high density plasma. By step-by-step Excimer laser annealing, dehydrogenation and recrystallization of Si film were carried out simultaneously. With step-by-step annealing and optimization of underlayer structure, it has succeeded to achieve large grain size of 300nm by using ICPCVD. Base on these results, poly-Si TFT was fabricated on plastic substrate successfully, and it is sufficient to drive pixels of OLEDs, as well as LCDs.

  • PDF