• Title/Summary/Keyword: Si delta doping

Search Result 15, Processing Time 0.019 seconds

Anodic Oxidation of Silicon in EPW Solution (EPW 용액에서의 실리콘 양극 산화막 형성에 관한 연구)

  • Bu, Jong-Uk;Kim, Seon-Mi;Kim, Seung-Hui;Kim, Seong-Tae;Gwon, Suk-In
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.181-187
    • /
    • 1993
  • We have studied the anodic oxidation of silicon in the anisotropic etchant of EPW(Ethylenediamine, Pyrocatechol and Water) solution using the cyclic polarization technique. The samples have been characterized by means of X-ray photoelectron spectroscopy(XPS) and secondary ion mass spectrometry (SIMS). The results of cyclic polarization experiments show that the anodic oxides formed on p- and n-type silicon wafers break down at the same potential while breakdown does not occur up to open circuit potential in the case of $p^+$-Si. Strong etch-resistance of $p^+$-XPS. SIMS depth profiles suggest that the critical concentration of boron for etch-stop to occur appears to be much higher than what is widely believed.

  • PDF

Structural and Electrical Properties of BiFeO3 Thin Films by Eu and V Co-Doping (Eu와 V 동시 도핑에 의한 BiFeO3 박막의 구조와 전기적 특성)

  • Chang, Sung-Keun;Kim, Youn-Jang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.229-233
    • /
    • 2019
  • Pure $BiFeO_3$ (BFO) and (Eu, V) co-doped $Bi_{0.9}Eu_{0.1}Fe_{0.975}V_{0.025}O_{3+{\delta}}$ (BEFVO) thin films were deposited on $Pt(111)/Ti/SiO_2/Si(100)$ substrates by chemical solution deposition. The effects of co-doping were observed by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy (SEM). The electrical properties of the BEFVO thin film were improved as compared to those of the pure BFO thin film. The remnant polarization ($2P_r$) of the BEFVO thin film was approximately $26{\mu}C/cm^2$ at a maximum electric field of 1,190 kV/cm with a frequency of 1 kHz. The leakage current density of the co-doped BEFVO thin film ($4.81{\times}10^{-5}A/cm^2$ at 100 kV/cm) was two orders of magnitude lower than of that of the pure BFO thin film.

Alteration of Physical Properties of Nanoparticle Embedded liquid Crystal Causing the Enhancement of the Performance of LCDs

  • Kobayashi, Shunsuke;Kineri, Tohru;Takatoh, Kohki;Akimoto, Mitsuhiro;Hoshi, Hajime;Nishida, Naoto;Toshima, Naoki;Sano, Satoru
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1473-1476
    • /
    • 2008
  • Doping the nanoparticles of Pd, p-$BaTiO_3$, $SiO_2$ and MgO into LCs alters their physical properties such as $K_{ii}$, $\Delta\varepsilon$, ${\Delta}n$, $\gamma_1$ and $T_{NI}$. Except for $K_{33}$, all these parameters decreases and thus bring the reduction of operating voltage and/or response times.

  • PDF

DC Characteristics of P-Channel Metal-Oxide-Semiconductor Field Effect Transistors with $Si_{0.88}Ge_{0.12}(C)$ Heterostructure Channel

  • Choi, Sang-Sik;Yang, Hyun-Duk;Han, Tae-Hyun;Cho, Deok-Ho;Kim, Jea-Yeon;Shim, Kyu-Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.2
    • /
    • pp.106-113
    • /
    • 2006
  • Electrical properties of $Si_{0.88}Ge_{0.12}(C)$ p-MOSFETs have been exploited in an effort to investigate $Si_{0.88}Ge_{0.12}(C)$ channel structures designed especially to suppress diffusion of dopants during epitaxial growth and subsequent fabrication processes. The incorporation of 0.1 percent of carbon in $Si_{0.88}Ge_{0.12}$ channel layer could accomodate stress due to lattice mismatch and adjust bandgap energy slightly, but resulted in deteriorated current-voltage properties in a broad range of operation conditions with depressed gain, high subthreshold current level and many weak breakdown electric field in gateoxide. $Si_{0.88}Ge_{0.12}(C)$ channel structures with boron delta-doping represented increased conductance and feasible use of modulation doped device of $Si_{0.88}Ge_{0.12}(C)$ heterostructures.

Reliability Characteristics of La-doped High-k/Metal Gate nMOSFETs

  • Kang, C.Y.;Choi, R.;Lee, B.H.;Jammy, R.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.3
    • /
    • pp.166-173
    • /
    • 2009
  • The reliability of hafnium oxide gate dielectrics incorporating lanthanum (La) is investigated. nMOSFETs with metal/La-doped high-k dielectric stack show lower $V_{th}$ and $I_{gate}$, which is attributed to the dipole formation at the high-k/$SiO_2$ interface. The reliability results well correlate with the dipole model. Due to lower trapping efficiency, the La-doping of the high-k gate stacks can provide better PBTI immunity, as well as lower charge trapping compared to the control HfSiO stacks. While the devices with La show better immunity to positive bias temperature instability (PBTI) under normal operating conditions, the threshold voltage shift (${\Delta}V_{th}$) at high field PBTI is significant. The results of a transconductance shift (${\Delta}G_m$) that traps are easily generated during high field stress because the La weakens atomic bonding in the interface layer.