Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.3.229

Structural and Electrical Properties of BiFeO3 Thin Films by Eu and V Co-Doping  

Chang, Sung-Keun (Department of Electronics, Chungwoon University)
Kim, Youn-Jang (Department of Electronics, Chungwoon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.3, 2019 , pp. 229-233 More about this Journal
Abstract
Pure $BiFeO_3$ (BFO) and (Eu, V) co-doped $Bi_{0.9}Eu_{0.1}Fe_{0.975}V_{0.025}O_{3+{\delta}}$ (BEFVO) thin films were deposited on $Pt(111)/Ti/SiO_2/Si(100)$ substrates by chemical solution deposition. The effects of co-doping were observed by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy (SEM). The electrical properties of the BEFVO thin film were improved as compared to those of the pure BFO thin film. The remnant polarization ($2P_r$) of the BEFVO thin film was approximately $26{\mu}C/cm^2$ at a maximum electric field of 1,190 kV/cm with a frequency of 1 kHz. The leakage current density of the co-doped BEFVO thin film ($4.81{\times}10^{-5}A/cm^2$ at 100 kV/cm) was two orders of magnitude lower than of that of the pure BFO thin film.
Keywords
$BiFeO_3$; Chemical solution deposition; Microstructure; Electrical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Prellier, M. P. Singh, and P. Murugavel, J. Phys.: Condens. Matter, 17, R803 (2005). [DOI: https://doi.org/10.1002/chin.200602223]   DOI
2 M. Bibes and A. Barthelemy, Nat. Mater., 7, 425 (2008). [DOI: https://doi.org/10.1038/nmat2189]   DOI
3 T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Back, C. B. Eom, and R. Ramesh, Nat. Mater., 5, 823 (2006). [DOI: https://doi.org/10.1038/nmat1731]   DOI
4 L. W. Martin, Y. H. Chu, and R. Ramesh, Mater. Sci. Eng., 68, 89 (2010). [DOI: https://doi.org/10.1016/j.mser.2010.03.001]   DOI
5 D. K. Pradhan, R.N.P. Choudhary, C. Rinaldi, and R. S. Katiyar, J. Appl. Phys., 106, 024102 (2009). [DOI: https://doi.org/10.1063/1.3158121]   DOI
6 Z. Hu, M. Li, B. Yu, L. Pei, J. Liu, J. Wang, and X. Zhao, J. Phys. D: Appl. Phys., 42, 185010 (2009). [DOI: https://doi.org/10.1088/0022-3727/42/18/185010]   DOI
7 B. Yu, M. Li, J. Liu, D. Guo, L. Pei, and X. Zaho, J. Phys. D: Appl. Phys., 41, 065003 (2008). [DOI: https://doi.org/10.1088/0022-3727/41/6/065003]   DOI
8 B. Yu, M. Li, J. Wang, L. Pei, D. Guo, and X. Zhao, J. Phys. D: Apply. Phys., 41, 185401 (2008). [DOI: https://doi.org/10.1088/0022-3727/41/18/185401]   DOI
9 T. Kawae, H. Tsuda, H. Naganuma, S. Yamada, M. Kumeda, S. Okamura, and A. Morimoto, Jpn. J. Appl. Phys, 47, 7586 (2008). [DOI: https://doi.org/10.1143/jjap.47.7586]   DOI
10 X. Qi, J. Dho, R. Tomov, M. G. Blamire, and J. L. MacManus-Driscoll, Appl. Phys. Lett., 86, 062903 (2005). [DOI: https://doi.org/10.1063/1.1862336]   DOI
11 R. D. Shannon, Acta Crystallogr., Sect. A: Found. Adv., A32, 751 (1976). [DOI: https://doi.org/10.1107/s0567739476001551]   DOI
12 Y. J. Kim, J. W. Kim, C. M. Raghavan, J. J. Oak, H. J. Kim, W. J. Kim, M. H. Kim, T. K. Song, and S. S. Kim, Ceram. Int., 39, S195 (2013). [DOI: https://doi.org/10.1016/j.ceramint.2012.10.061]   DOI
13 P. Godara, A. Agarwal, N. Ahlawat, S. Sanghi, and K. Kaswan, J. Magn. Magn. Mater., 406, 76 (2016). [DOI: https://doi.org/10.1016/j.jmmm.2015.12.089]   DOI
14 I. Vrejoiu, G. Le Rhun, L. Pintilie, D. Hesse, M. Alexe, and U. Gosele, Adv. Mater., 18, 1657 (2006). [DOI: https://doi.org/10.1002/adma.200502711]   DOI
15 Z. Zhong and H. Ishiwara, Appl. Phys. Lett., 95, 112902 (2009). [DOI: https://doi.org/10.1063/1.3231073]   DOI
16 J. W. Kim, D. Do, and S. S. Kim, Thin Solid Films, 518, 6514 (2010). [DOI: https://doi.org/10.1016/j.tsf.2010.02.001]   DOI