• 제목/요약/키워드: Si(silicon)

검색결과 3,697건 처리시간 0.029초

Hafnium Oxide Layer Based Metal-Oxide-Semiconductor (MOS) Capacitors with Annealing Temperature Variation

  • 이나영;최병덕
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.318.1-318.1
    • /
    • 2016
  • Hafnium Oxide (HfOx) has been attracted as a promising gate dielectric for replacing SiO2 in gate stack applications. In this paper, Metal-Oxide-Semiconductor (MOS) capacitor with solution processed HfO2 high-k material as a dielectric were fabricated. The solvent using $HfOCl2{\cdot}8H2O$ dissolve in 2-Methoxy ethanol was prepared at 0.3M. The HfOx layers were deposited on p-type silicon substrate by spin-coating at $250^{\circ}C$ for 5 minutes on a hot plate and repeated the same cycle for 5 times, followed by annealing process at 350, 450 and $550^{\circ}C$ for 2 hours. When the annealing temperature was increased from 350 to $550^{\circ}C$, capacitance value was increased from 337 to 367 pF. That was resulted from the higher temperature of HfOx which have more crystallization phase, therefore dielectric constant (k) was increased from 11 to 12. It leads to the formation of dense HfOx film and improve the ability of the insulator layer. We confirm that HfOx layer have a good performance for dielectric layer in MOS capacitors.

  • PDF

알루미늄 합금과 그 접합 방법 (Aluminum alloys and their joining methods)

  • 정도현;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제25권2호
    • /
    • pp.9-17
    • /
    • 2018
  • Aluminum (Al) and its alloys have been used widely in a variety of industries such as structural, electronic, aerospace, and particularly automotive industries due to their lightweight characteristic, outstanding ductility, formability, high oxidation and corrosion resistance, and high thermal and electrical conductivity. Al have different kinds of alloys according to the various additional elements system and they should be selected properly depending on their effectiveness and suitability for their particular purpose. The major elements for Al alloys are silicon (Si), magnesium (Mg), manganese (Mn), copper (Cu), and zinc (Zn). In order for Al alloys to use for each industry, it is necessary to study of Al to Al joining and/or the Al to dissimilar materials joining to combine the individual parts into one. Many studies on joining technologies about Al to Al and Al to dissimilar materials have been performed such as press joining, bolted joint, welding, soldering, riveting, adhesive bonding, and brazing. This study reviews a variety of Al alloys and their joining method including its principles and properties with recent trends.

급속일산화법에 의한 실리콘 산화막의 특성 (Characteristics of Silicon Oxide Films Grown by Rapid Thermal Oxidation)

  • 이귀연;양두영;이재용
    • 전자공학회논문지A
    • /
    • 제28A권12호
    • /
    • pp.59-64
    • /
    • 1991
  • Thin (25-103$\AA$) SiO$_2$ films are grown using the rapid thermal oxidation processing at temperatures of 105$0^{\circ}C$-115$0^{\circ}C$ for 5-30 sec, in order to investigate the characteristics of ultra thin oxide. For measuring the thickness of oxide TEM, ellipsometry, and C-V method which is taken in the condition of small surface band bending are used and compared. When neglecting the small deviation affected by both interface state and moisture charge effect, those three methods described above give similar results. In order to examine the effect of rapid thermal annealing, part of samples are annealed in N$_2$ ambient. MOS capacitors are fabricated and the characteristics of I-V and C-V are measured. Measurements show that the activation energy of initial thickness of oxide grown during the ramp-up time is of 1.125eV and the activation energy of the oxidation rate is of 0.98eV. As oxidation temperature is increased, dielectric breakdown field E$_{BD}$ is decreased due to the increase of fixed charge density N$_f$ However, E$_{BD}$ is shown to be decreased as increasing the thickness of oxide. The increase of N$_f$ in the early stage of thermal annealing results in the decrease of E$_{BD}$.

  • PDF

산업용 압전 잉크젯 헤드의 구동신호에 따른 특성 (The Effects of Driving Waveform for Piezoelectric Drop On Demand Industrial Inkjet Head)

  • 김영재;유영석;심원철;박창성;정재우;오용수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권8호
    • /
    • pp.417-422
    • /
    • 2006
  • This paper presents the effect of driving waveform for piezoelectric bend mode inkjet printhead with optimized mechanical design. Experimental and theoretical studies on the applied driving waveform versus jetting characteristics were performed. The inkjet head has been designed to maximize the droplet velocity, minimize voltage response of the actuator and optimize the firing frequency to eject ink droplet. The head design was carried out by using mechanical simulation. The printhead has been fabricated with Si(100) and SOI wafers by MEMS process and silicon direct bonding method. To investigate how performance of the piezoelectric ceramic actuator influences on droplet diameter and droplet velocity, the method of stroboscopy was used. Also we observed the movement characteristics of PZT actuator with LDV(Laser Doppler Vibrometer) system, oscilloscope and dynamic signal analyzer. Missing nozzles caused by bubbles in chamber were monitored by their resonance frequency. Using the water based ink of viscosity of 4.8 cps and surface tension of 0.025 N/m, it is possible to eject stable droplets up to 20 kHz, 4.4 m/s and above 8 pl at the different applied driving waveforms.

이연에 의한 $\beta$$-사이알론의 열분해 (Thermal Decomposition of $\beta$$-Sialon by Graphite)

  • 최상흘;이희철;이종진;서규식
    • 한국세라믹학회지
    • /
    • 제24권5호
    • /
    • pp.453-460
    • /
    • 1987
  • β'-sialon(Z=2.7) specimens with <30%wt. graphite as a reducing agent were decomposed at 1350°up to 1,450℃ under the atmosphere of 90% N2-10%H2. The decomposition of β'-sialon was calculated from the change in Z-value, and the formation of new minerals was identified from X-ray diffraction patterns. The decomposition reactions of sialon were considered to yield a stable sialon close to β-silicon nitride and some aluminum compounds according to the following equations; β'-sialon(s)+C(s)+N2(g)→β2-sialon(metastable)+β3-sialon(stalbe phase) β2-sialon(s)+C(s)+N2(g)→β3-sialon(s)+AlN(s)+α-Al2O3(s)+15R(s)+SiO(g)+Al2O(g)+CO(g) Z-value; β2( 3.5)>β'( 2.7)>β3( 0.5) The decomposition rate of sialon was controlled by two mechanisms ; One was characterized by the interface area of contact, corresponding to an apparent activation energy of 50.5Kcal/mol in the initial stage, and the other by the diffusion, corresponding to that of 104.3Kcal/mol in the final stage of the decomposition.

  • PDF

대향류 확산 화염 중에서 비구형 입자 성장에 관한 해석 (Simulation of the Growth of Non-Spherical Particles in a Counterflow Diffusion Flame)

  • 정재인;황준영;이방원;최만수;정석호
    • 대한기계학회논문집B
    • /
    • 제23권8호
    • /
    • pp.997-1009
    • /
    • 1999
  • Silica particle formation and growth process including chemical reaction, coagulation and sintering was studied in a counterflow diffusion flame burner. The counterflow geometry provides a one dimensional flow field, along the stagnation point streamline, which greatly simplifies interpretation of the particle growth characteristics. $SiCl_4$ has been used as the source of silicon in hydrogen/oxygen/argon flames. The temperature profiles obtained by calculation showed a good agreement with experiment data. Using one and two dimensional sectional method, aerosol dynamics equation in a flame was solved, and these two results were compared. The two dimensional section method can consider sintering effect and growth of primary particle during synthesis, thus it showed evolution of morphology of non-spherical particles (aggregates) using surface fractal dimension. The effects of flame temperature and chemical loading on particle dynamics were studied. Geometric mean diameter based on surface area and total number concentration followed the trend of experiment results, especially, the change of diameters showed the sintering effect in high temperature environment.

DC Bias가 다결정 실리콘 기판 위 나노결정 다이아몬드 박막의 성장에 미치는 영향 (Effect of DC Bias on the Growth of Nanocrystalline Diamond Film over Poly-Silicon Substrate)

  • 김선태;강찬형
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.180-180
    • /
    • 2016
  • 보론이 도핑된 $3{\times}3cm$ 크기의 p 형 다결정 실리콘 기판의 표면을 경면연마한 후, 다이아몬드 입자의 seeding을 위해 슬러리 중 다이아몬드 분말의 입도를 5 nm로 고정하고 초음파 전처리 공정을 진행한 후, 다이아몬드 박막을 증착하였다. 다이아몬드 증착은 Microwave Plasma Chemical Vapor Deposition 장비를 이용하였으며, 공정 조건은 초기 진공 $10{\times}10^{-3}Torr$, 공정 가스 비율 $Ar:CH_4=200:2$, 가스 유량 202 sccm, 공정압력 90 Torr, 마이크로웨이브 파워 600 W, 기판 온도 $600^{\circ}C$이었다. 기판에 DC bias 전압을 인가하는 것을 공정 변수로 하여 0, -50, -100, -150, -200 V로 변화시켜가며, 0.5, 1, 2, 4 h 동안 증착을 진행하였다. 주사전자현미경과 XRD, AFM, 접촉각 측정 장비를 이용하여 증착된 다이아몬드 입자와 막의 특성을 분석하였다. 각 bias 조건에서 초기에는 다이아몬드 입자가 형성되어 성장되었다가 시간이 증가될수록 연속적인 다이아몬드 막이 형성되었다. Table 1은 각 bias 조건에서 증착 시간을 4 h까지 변화시키면서 얻은 다이아몬드 입자 또는 박막의 높이(두께)를 나타낸 것이다. 2 h까지의 공정 초기에는 bias 조건의 영향을 파악하기 어려운데, 이는 bias에 의한 과도한 이온포격으로 입자가 박막으로의 성장에 저해를 받는 것으로 사료된다. 증착시간이 4 h가 경과하면서 -150 V 조건에서 가장 두꺼운 막이 성장되었다. 이는 기판 표면을 덮은 다이아몬드 박막 위에서 이차 핵생성이 bias에 의해 촉진되기 때문으로 해석된다. -200 V의 조건에서는 오히려 막의 성장이 더 느렸는데, 이는 Fig. 1에 보이듯이 과도한 이온포격으로 Si/diamond 계면에서 기공이 형성된 것과 연관이 있는 것으로 보인다.

  • PDF

Influence of Heat-Treatment on the Adhesive Strength between a Micro-Sized Bonded Component and a Silicon Substrate under Bend and Shear Loading Conditions

  • Ishiyama, Chiemi
    • 비파괴검사학회지
    • /
    • 제32권2호
    • /
    • pp.122-130
    • /
    • 2012
  • Adhesive bend and shear tests of micro-sized bonded component have been performed to clarify the relationship between effects of heat-treatment on the adhesive strength and the bonded specimen shape using Weibull analysis. Multiple micro-sized SU-8 columns with four different diameters were fabricated on a Si substrate under the same fabrication condition. Heat-treatment can improve both of the adhesive bend and shear strength. The improvement rate of the adhesive shear strength is much larger than that of the adhesive bend strength, because the residual stress, which must change by heat-treatment, should effect more strongly on the shear loading. In case of bend type test, the adhesive bend strength in the smaller diameters (50 and $75\;{\mu}m$) widely vary, because the critical size of the natural defect (micro-crack) should vary more widely in the smaller diameters. In contrast, in case of shear type test, the adhesive shear strengths in each diameter of the columns little vary. This suggests that the size of the natural defects may not strongly influence on the adhesive shear strength. All the result suggests that both of the adhesive bend and shear strengths should be complicatedly affected by heat-treatment and the bonded columnar diameter.

나노 사이즈 hot embossing 공정시 폴리머의 영향 (Effect of polymer substrates on nano scale hot embossing)

  • Lee, Jin-Hyung;Kim, Yang-sun;Park, Jin-goo
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.71-71
    • /
    • 2003
  • Hot embossing has been widely accepted as an alternative to photolithography in generating patterns on polymeric substrates. The optimization of embossing process should be accomplished based on polymer substrate materials. In this paper, the effect of polymer substrates on nano scale hot embossing process was studied. Silicon molds with nano size patterns were fabricated by e-beam direct writing. Molds were coated with self-assembled monolayer (SAM) of (1, 1, 2.2H -perfluorooctyl)-trichlorosilane to reduce the stiction between mold and substrates. For an embossing, pressure of 55, 75 bur, embossing time of 5 min and temperature of above transition temperature were peformed. Polymethylmethacrylates (PMMA) with different molecular weights of 450,000 and 950,000, MR-I 8010 polymer (Micro Resist Technology) and polyaliphatic imide copolymer were applied for hot embossing process development in nano size. These polymers were spun coated on the Si wafer with the thickness between 150 and 200 nm. The nano size patterns obtained after hot embossing were observed and compared based on the polymer properties by scanning electron microscopy (SEM). The imprinting uniformity dependent on the Pattern density and size was investigated. Four polymers have been evaluated for the nanoimprint By optimizing the process parameters, the four polymers lead to uniform imprint and good pattern profiles. A reduction in the friction for smooth surfaces during demoulding is possible by polymer selection.

  • PDF

태양전지 변환 효율 향상을 위한 근적외선 파장 변환 필름에 관한 연구 (A Study on the Near Infrared Ray Wavelength Conversion Film for Improving Conversion Efficiency of Solar Cell)

  • 박병규;박계춘;이진
    • 한국전기전자재료학회논문지
    • /
    • 제30권11호
    • /
    • pp.699-704
    • /
    • 2017
  • The amount of electric power for photovoltaic power generation depends on the location of the power plant and the direction of solar cell. The solar cell controls the generation of solar power plants. Therefore, the structure of solar cell, manufacturing method, and optic technology were factors contributing to increased solar cell efficiency; however, the technical limit has been reached. Herein, we propose a new method to increase the solar cell efficiency using a wavelength conversion technology that converts ultraviolet and infrared rays, which are not effectively used in solar cells, into effective wavelength of solar cell. We used fluoride $Na(Ca)YF_4$ phosphor for wavelength conversion. Then, a wavelength-conversion fluorescent paste, prepared using an organic-silicon binder, was used to prepare a film that was applied to Si solar cells. It was confirmed that conversion efficiency improved by 5% or more.