Browse > Article
http://dx.doi.org/10.6117/kmeps.2018.25.2.009

Aluminum alloys and their joining methods  

Jung, Do-hyun (Department of Materials Science and Engineering, University of Seoul)
Jung, Jae Pil (Department of Materials Science and Engineering, University of Seoul)
Publication Information
Journal of the Microelectronics and Packaging Society / v.25, no.2, 2018 , pp. 9-17 More about this Journal
Abstract
Aluminum (Al) and its alloys have been used widely in a variety of industries such as structural, electronic, aerospace, and particularly automotive industries due to their lightweight characteristic, outstanding ductility, formability, high oxidation and corrosion resistance, and high thermal and electrical conductivity. Al have different kinds of alloys according to the various additional elements system and they should be selected properly depending on their effectiveness and suitability for their particular purpose. The major elements for Al alloys are silicon (Si), magnesium (Mg), manganese (Mn), copper (Cu), and zinc (Zn). In order for Al alloys to use for each industry, it is necessary to study of Al to Al joining and/or the Al to dissimilar materials joining to combine the individual parts into one. Many studies on joining technologies about Al to Al and Al to dissimilar materials have been performed such as press joining, bolted joint, welding, soldering, riveting, adhesive bonding, and brazing. This study reviews a variety of Al alloys and their joining method including its principles and properties with recent trends.
Keywords
aluminum; joining; dissimilar materials; welding; brazing;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 S. Sabari, S. Malarvizhi, V. Balasubramanian, and G. Reddy, "Experimental and numerical investigation on under-water friction stir welding of armour grade AA2519-T87 aluminium alloy", Deff. Technol., 12(4), 324 (2016).   DOI
2 S. Lee, D. H. Jung, and J. P. Jung, "Aluminum brazing and its principle", J. Microelectron. Packag. Soc., 24(4), 1 (2017).   DOI
3 A. Iniesta, D. Mendoza, J. Romero, and L. Gonzalez, "Multi-objective optimization of an aluminum torch brazing process by means of genetic programming and R-NSGA-II", Int. J. Adv. Manuf. Technol., 91(9), 4117 (2017).   DOI
4 D. Wei, X. Bai, L. Yuan, L. Bin, and W. Qing, "Torch brazing 3003 aluminum alloy with Zn-Al filler metal", Trans. Non-ferrous Met. Soc. China., 22(1), 30 (2012).   DOI
5 S. P. Chen, K. M. Mussert, and S. V. Zwaag, "Precipitation kinetics in Al6061 and in an Al6061-alumina particle composite", J. Mater. Sci., 33(18), 4477 (1998).   DOI
6 A. K. Mishra, and R. K. Srivastava, "Wear behaviour of Al-6061/SiC metal matrix composites", J. Inst. Eng. India Ser. C, 98(2), 97 (2017).   DOI
7 Y. Kim, K. Park, and S. Kwak, "Mechanical fastening and joining technologies to using multi mixed materials of car body", J. Weld. Join., 33(3), 12 (2015).   DOI
8 B. Xing, X. He, K. Zeng, and Y. Wang, "Mechanical properties of self-piercing riveted joints in aluminum alloy 5052", Int. J. Adv. Manuf. Technol., 75(1), 351 (2014).   DOI
9 F. Ding and H. Yong, "Study on activating TIG welding for aluminium alloys", Weld. World., 49(1), 22 (2005).
10 Z. Lu, P. Huang, W. Gao, Y. Li, H. Zhang, and S. Yin, "ARC welding method for bonding steel with aluminum", Front. Mech. Eng. China., 4(2), 134 (2009).   DOI
11 S. Lin, J. Song, G. Ma, and C. Yang, "Dissimilar metals TIG welding-brazing of aluminum alloy to galvanized steel", Front. Mater. Sci. China., 3(1), 78 (2009).   DOI
12 I. Sevim, F. Hayat, Y. Kaya, N. Kahraman, and S. Sahin, "The study of MIG weldability of heat-treated aluminum alloys", Int. J. Adv. Manuf. Technol., 66(9), 1825 (2013).   DOI
13 G. Turichin, E. Valdaytseva, and I. Tzibulsky, "Simulation and technology of hybrid welding of thick steel parts with high power fiber laser", Phys. Procedia., 12(A), 646 (2011).   DOI
14 D. Sakurada, K. Katoh, and H. Tokisue, "Underwater friction welding of 6061 aluminum alloy", J. Jpn. Inst. Light Met., 51(1), 2 (2002).
15 D. Y. Su, H. J. Jin, and S. J. Wu, "Microstructure and mechanical properties of 2219 aluminum alloy VPTIG welds during cyclic thermal treatment", Rare Metals, (2015).
16 L. Q. Niu, X. Y. Li, L. Zhang, X. B. Liang, and M. Li, "Correlation between microstructure and mechanical properties of 2219-T8 aluminum alloy joints by VPTIG welding", Acta Metall. Sin. (Engl. Lett.), 30(5), 438 (2017).   DOI
17 J. P. Martins, A. L. M. Carvalho, and A. F. Padilha, "Microstructure and texture assessment of Al-Mn-Fe-Si (3003) aluminum alloy produced by continuous and semicontinuouscasting processes", J. Mater. Sci., 44(11), 2966 (2009).   DOI
18 M. Gunyuz, H. Mollaoglu, and A. Ulus, "Improvement of corrosion resistance in modified 3003 aluminum alloys produced by twin roll casting under different casting parameters", Light Metals, 1255 (2015).
19 A. Sharma, M. H. Roh, D. H. Jung, and J. P. Jung, "Effect of $ZrO_{2}$ nanoparticles on the microstructure of Al-Si-Cu filler for low-temperature Al brazing applications", Metall. Mater. Trans. A., 47(1), 510 (2016).   DOI
20 E. Guo, G. Cao, Y. Feng, L. Wang, G. Wang, and X. Lv, "Modification of Sr on 4004 aluminum alloy", JOM, 65(5), 613 (2013).   DOI
21 S. Niu, S. Chen, H. Dong, D. Zhao, X. Zhang, X. Guo, and G. Wang, "Microstructure and properties of lap joint between aluminum alloy and galvanized steel by CMT", J. Mater. Eng. Perf., 25(5), 1839 (2016).   DOI
22 S. Shanavas, J. E. Raja, and N. Murugan, "Weldability of marine grade AA 5052 aluminum alloy by underwater friction stir welding", Int. J. Adv. Manuf. Technol., 95(9), 4535 (2018).   DOI
23 J. Shim, B. Kang, and I. Kim, "Characteristics of 5052 aluminum alloy sheets joint using electromagnetic force", J. Mecha. Sci. Technol., 31(7), 3437 (2017).   DOI
24 P. Ebrahimzad, M. Ghasempar, and M. Balali, "Friction stir processing of aerospace aluminum alloy by addition of carbon nano tube", Trans. Indian. Inst. Met., 70(9), 2241 (2017).   DOI
25 I. N. Fridlyander, V. G. Sister, O. E. Grushko, V. V. Berstenev, L. M. Sheveleva, and L. A. Ivanova, "Aluminum alloys:Promising materials in the automotive industry", Met. Sci. Heat Treat., 44(9), 365 (2002).   DOI
26 J. H. Park, K. J. Kim, J. W. Lee, and J. K. Yoon, "Light-weightdesign of automotive suspension link based on design of experiment", Int. J. Auto. Technol., 16(1), 67 (2015).   DOI
27 H. T. Kim and S. C. Kil, "High efficient welding technology of the car bodies", J. Weld. Join., 34(4), 62 (2016).   DOI
28 S. M. Emami, M. Divandari, H. Arabi, and E. Hajjari, "Effect of melt-to-solid insert volume ratio on Mg/Al dissimilar metals bonding", J. Mater. Eng. Perf., 22(1), 123 (2013).   DOI
29 Z. Zhu, K. Y. Lee, and X. Wang, "Ultrasonic welding of dissimilar metals, AA6061", Int. J. Adv. Manuf. Technol., 59(5), 569 (2012).   DOI
30 A. Sharma, Y. S. Shin, and J. P. Jung, "Influence of various additional elements in Al based filler alloys for automotive and brazing industry", J. Weld. Join., 33(5), 1 (2015).   DOI
31 A. Sharma and J. P. Jung, "Possibility of Al-Si brazing alloys for industrial microjoining applications", J. Microelectron. Packag. Soc., 24(3), 1 (2017).   DOI
32 A. Sharma and J. P. Jung, "Aluminium based brazing fillers for high temperature electronic packaging applications", J. Microelectron. Packag. Soc., 22(4), 1 (2015).   DOI