• Title/Summary/Keyword: Short Circuit Protection

Search Result 138, Processing Time 0.022 seconds

Short-circuit Protection Circuit Design for SiC MOSFET Using Current Sensing Circuit Based on Rogowski Coil (Rogowski Coil 기반의 전류 센싱 회로를 적용한 SiC MOSFET 단락 보호 회로 설계)

  • Lee, Ju-A;Byun, Jongeun;Ann, Sangjoon;Son, Won-Jin;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.214-221
    • /
    • 2021
  • SiC MOSFETs require a faster and more reliable short-circuit protection circuit than conventional methods due to narrow short-circuit withstand times. Therefore, this research proposes a short-circuit protection circuit using a current-sensing circuit based on Rogowski coil. The method of designing the current-sensing circuit, which is a component of the proposed circuit, is presented first. The integrator and input/output filter that compose the current-sensing circuit are designed to have a wide bandwidth for accurately measuring short-circuit currents with high di/dt. The precision of the designed sensing circuit is verified on a double pulse test (DPT). In addition, the sensing accuracy according to the bandwidth of the filters and the number of turns of the Rogowski coil is analyzed. Next, the entire short-circuit protection circuit with the current-sensing circuit is designed in consideration of the fast short-circuit shutdown time. To verify the performance of this circuit, a short-circuit test is conducted for two cases of short-circuit conditions that can occur in the half-bridge structure. Finally, the short-circuit shutdown time is measured to confirm the suitability of the proposed protection circuit for the SiC MOSFET short-circuit protection.

An Improved Short Circuit Protection Scheme for IGBT Inverters (IGBT 인버터를 위한 향상된 단락회로 보호기법)

  • 서범석;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.426-436
    • /
    • 1998
  • Identification of fault current during the operation of a power semiconductor switch and activation of suitable remedial actions are important for reliable operation of power converters. A short circuit is a basic and severe fault situation in a circuit structure such as voltage source converters. This paper presents a new active protection circuit for fast and precise clamping and safe shutdown of fault currents of the IGBTs. This circuit allows operation of the IGBTs with a higher on-state gate voltage, which can thereby reduce the conduction loss in the device without compromising the short circuit protection characteristics. The operation of the circuit is studied under various conditions, considering variation of temperature, rising rate of fault current, gate voltage value, and protection circuit parameters. An evaluation of the operation of the circuit is made using IGBTs from different to confirm the effectiveness of the protection circuit.

  • PDF

On-chip ESD protection design by using short-circuited stub for RF applications (Short-Circuited Stub를 이용한 RF회로에서의 정전기 방지)

  • 박창근;염기수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.288-292
    • /
    • 2002
  • We propose the new type of on-chip ESD protection method for RF applications. By using the properties of RF circuits, we can use the short-circuited stub as ESD protection device in front of the DC blocking capacitor Specially, we can use short-circuited stub as the portion of the matching circuit so to reduce the and various parameters of the transmission line. This new type ESD protection method is very different from the conventional ESD protection method. With the new type ESD protection method, we remove the parasitic capacitance of ESD protection device which degrade the performance of core circuit.

  • PDF

Short-circuit Protection for the Series-Connected Switches in High Voltage Applications

  • Tu Vo, Nguyen Qui;Choi, Hyun-Chul;Lee, Chang-Hee
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1298-1305
    • /
    • 2016
  • This paper presents the development of a short-circuit protection mechanism on a high voltage switch (HVS) board which is built by a series connection of semiconductor switches. The HVS board is able to quickly detect and limit the peak fault current before the signal board triggers off a gate signal. Voltage clamping techniques are used to safely turn off the short-circuit current and to prevent overvoltage of the series-connected switches. The selection method of the main devices and the development of the HVS board are described in detail. Experimental results have demonstrated that the HVS board is capable of withstanding a short-circuit current at a rated voltage of 10kV without a di/dt slowing down inductor. The corresponding short-circuit current is restricted to 125 A within 100 ns and can safely turn off within 120 ns.

A Study on the Short-circuit Protection System for Learning Teaching Instruction Using Incandescent Light Bulb (백열전구를 이용한 학습 교구용 단락보호장치에 대한 고찰)

  • Hong-yong Kim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.844-850
    • /
    • 2023
  • Purpose: This paper is about the development of a short-circuit protection power supply device using incandescent bulbs and its application for educational materials. This article, which considers electrical safety and energy conservation at the same time, has many kinds of potential applications for both educational and industrial areas. The above mentioned short-circuit protection power supply device using incandescent bulbs enhances safety and efficiency compared to normal current power supply devices. Additionally, as an educational materials, it can be used for electric safety training, and provides practical electrical safety knowledge on our actual life. Method: Using incandescent bulbs, design new type of short-circuit protection power supply device, and through verifying the function and safety of the device, make new type device, and applying it for an educational tool. Conclusion: This study is to develop new type of power supply device, and verify the possibility of the application for the device as an educational materials. Through this research, show an innovative solution, which contribute to electrical safety and energy conservation, and open the potential possibility on educational and industrial sectors.This kind of research is expected to contributes to enhanced research, and education on electrical safety and energy conservation management.

Analysis on Insulation and Protection Characteristics of Grid Connected ESS in Ground/Short-Circuit Fault (지/단락실증시험에서 MW급 계통연계형 ESS 절연/보호시스템 성능 분석에 관한 연구)

  • Kim, Jin-Tae;Lee, Seung-Yong;Park, Sang-Jin;Cha, Han-Ju;Kim, Soo-Yeol
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.119-122
    • /
    • 2020
  • With recent ESS (Energy Storage System) fire accident, the fault protection performance is becoming more important. However, there has never been any experiments with the protection performance on the faults in the ESS system level. In this study, the effect of AC ground fault and IGBT (Insulated Gate Bipolar mode Transistor) short-circuit failure on MW class ESS was performed experimentally for the first time in the world. First of all, the effect of the AC single line ground fault on battery was analyzed. Moreover, the transient voltage was investigated as a function of the battery capacity and the power level. Finally, the breaking capability and insulation performance of ESS were examined under PCS short-circuit fault condition. Through the tests, it was found that ESS protection system safely blocked the faulty current regardless of the faults, whereas the electronic parts such as IGBT and MC (Magnetic Contactor) were broken by the fault current. Also, the electrical breakdown in ESS resulted from the transient voltage during the protection process.

Fault Current Calculation and Coordination by IEC Standards (IEC 표준에 의한 고장전류 계산과 보호협조)

  • Son, Seok-Geum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.6-12
    • /
    • 2014
  • The safety and reliability of the power system short-circuit current, the short-circuit current depends on the failure to obtain the objective is to quickly eliminate the breaking capacity of the circuit-breaker selection of the cable, the insulation of electrical equipment and protective relay an important factor in determining the level correction and protective relay selection scheme to be meaningful. Standards used in the domestic circuit breaker is applied to the production of IEC standard, but the American National Standards (ANSI / IEEE) by NEMA specification of the fault current calculations and the application of the asymmetric coefficient Korea. Therefore, in this paper, the IEC 60909 standard IEC breaker fault current calculation method and the method for selection of system configurations reviewed and protection system for reviewing the configuration of various protective relays appropriate correction and the correction value is main protection, back-up protection the equipment so that the period of protection relay coordination to minimize accidents and accident protection to minimize interruptions proposed for cooperation.

Design of Gate Driver Chip for Ionizer Modules with Fault Detection Function (Fault Detection 기능을 갖는 이오나이저 모듈용 게이트 구동 칩 설계)

  • Jin, Hongzhou;Ha, PanBong;Kim, YoungHee
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.132-139
    • /
    • 2020
  • The ionizer module used in this air cleaner supplies high voltages of 3.5KV / -4KV to the discharge electrode HV+ / HV- using a winding transformer to generate positive and negative ions by electric field radiation of carbon fiber brush. The ionizer module circuit using the existing MCU has the disadvantage of large PCB size and expensive price, and the gate driver chip using the existing ring oscillator has oscillation period sensitive to PVT (Process-Voltage-Temperature) fluctuation and there is risk of fire or electric shock because there is no fault detection function by short circuit of HV+ and GND as well as HV- and GND. Therefore, in this paper, even though PVT fluctuates, by using 7-bit binary up counter, HV+ voltage reaches the target voltage by adjusting oscillation period. And an HV+ short fault detection circuit for detecting a short circuit between HV+ and GND, an HV- short fault detection circuit for detecting a short circuit between HV- and GND, and an OVP (Over-Voltage Protection) for detecting that HV+ rises above an overvoltage are newly proposed.

Design of Low-Melting Metal Fuse Elements of Current Sensing Type Protection Device for Large Capacity Secondary Battery Protection System (대용량 이차전지 보호 시스템용 전류 감지 동작형 보호소자의 저융점 금속 가용체 설계)

  • Kim, Eun Min;Kang, Chang yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.427-432
    • /
    • 2018
  • High-capacity secondary batteries can cause explosion hazards owing to microcurrent variations or current surges that occur in short circuits. Consequently, complete safety cannot be achieved with general protection that is limited to a mere current fuse. Hence, in the case of secondary batteries, it is necessary for the protector to limit the inrush current in a short circuit, and to detect the current during microcurrent variations. To serve this purpose, a fuse can be employed for the secondary battery protection circuit with current detection. This study aims at designing a protection device that can stably operate in the hazardous circumstances associated with high-capacity secondary batteries. To achieve the said objective, a detecting fuse was designed from an alloy of low melting point elements for securing stability in abnormal current states. Experimental results show that the operating I-T and V-T characteristic constraints can be satisfied by employing the proposed current detecting self-contained low melting point fuse, and through the resistance of the heating resistor. These results thus verify that the proposed protection device can prevent the hazards of short circuit current surges and microcurrent variations of secondary batteries.