• Title/Summary/Keyword: Shipbuilding process planning

Search Result 64, Processing Time 0.031 seconds

Case-based Block Division Expert System in Shipbuilding (사례기반 추론에 의한 블럭분할 절문가 시스템)

  • 박철우;강신한;김광만;이재원
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.17 no.30
    • /
    • pp.161-165
    • /
    • 1994
  • The shipbuilding industry is one of the domains which need an effective computer application. Particularly the productivity of process planning of a shipbuilding for crude -oil tanker can be greatly enhanced by introducing CAPP(Computer Aied Process Planning). In this paper we describe a prototype expert system which enables block division process planning in shipbuilding. The system determines block division lines of the midship sections of oiltanker. Case-based reasoning(CBR) approach is applied for this purpose instead of rule-based one.

  • PDF

Development of production planning system for shipbuilding using component-based development framework

  • Cho, Sungwon;Lee, Jong Moo;Woo, Jong Hun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.405-430
    • /
    • 2021
  • Production planning is a key part of production management of manufacturing enterprises. Since computerization began, modern production planning has been developed starting with Material Requirement Planning (MRP), and today Enterprise Resource Planning (ERP), Advanced Planning and Scheduling (APS), Supply Chain Management (SCM) has been spreading and advanced. However, in the shipbuilding field, rather than applying these general-purpose production planning methodologies, in most cases, each shipyard has developed its own production planning system. This is because the applications of general-purpose production planning methods are limited due to the order-taking industry such as shipbuilding with highly complicated construction process consisting of millions of parts per ship. This study introduces the design and development of the production planning system reflecting the production environment of heavy shipyards in Korea. Since Korean shipyards such as Hyundai, Daewoo and Samsung build more than 10 ships per year (50-70 ships in the case of large shipyards), a planning system for the mixed production with complex construction processes is required. This study draws requirements using PI/BPR (process innovation and business process reengineering) methodology to develop a production planning system for shipyards that simultaneously build several ships. Then, CBD software development methodology was applied for the design and implementation of planning system with drawn requirements. It is expected that the systematic development procedure as well as the requirements and functional elements for the development of the shipyard production planning system introduced in this study will be able to present important guidelines in the related research field of shipbuilding management.

Production Process Analysis based on Information Strategy Planning with Present Condition Diagnosis of Small FRP Shipyards (소형 FRP 조선소 현황 진단과 정보 전략 계획 방법론 기반의 생산 공정 분석)

  • Kim, Hyun-Woo;Hwang, Hun-Gyu;Shin, Il-Sik;Cho, Je-Hyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.353-361
    • /
    • 2016
  • Recently, the small shipyard companies have difficulties that causes by depression of shipbuilding industry. The small shipyard companies need some strategies to overcome the slump in shipbuilding industry field. In this paper, we conduct the survey for present condition diagnosis of small shipyard companies, and analyze the production process based on Information Strategy Planning(ISP) method. When analyze based on ISP, we apply IDEF0 and LOVC technique to analyze the production process of small shipyard companies. Also we conduct the gap analysis between the analyzed present condition and the requirements of improvement. Therefore, the most important result of the analysis is to establish a system for enterprise planning and management, which customized for small shipyard companies, with satisfying economic feasibility and usability.

Research on a simulation-based ship production support system for middle-sized shipbuilding companies

  • Song, Young-Joo;Wo, Jong-Hun;Shin, Jong-Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.70-77
    • /
    • 2009
  • Today, many middle-sized shipbuilding companies in Korea are experiencing strong competition from shipbuilding companies in other nations. This competition is particularly affecting small- and middle-sized shipyards, rather than the major shipyards that have their own support systems and development capabilities. The acquisition of techniques that would enable maximization of production efficiency and minimization of the gap between planning and execution would increase the competitiveness of small- and middle-sized Korean shipyards. In this paper, research on a simulation-based support system for ship production management, which can be applied to the shipbuilding processes of middle-sized shipbuilding companies, is presented. The simulation research includes layout optimization, load balancing, work stage operation planning, block logistics, and integrated material management. Each item is integrated into a network system with a value chain that includes all shipbuilding processes.

Methods for the Modularization of Simulation Model and the Management Scheme of Simulation Scenario for Shipbuilding Process Planning (조선 공정 계획을 위한 시뮬레이션 모델의 모듈화 및 시나리오 처리 방법론)

  • Cha, Ju-Hwan;Ku, Nam-Kug;Roh, Myung-Il;Cho, Doo-Yeoun;Lee, Kyu-Yeul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.1
    • /
    • pp.17-25
    • /
    • 2012
  • Recently, requests for accurate process planning using simulation have been increasing in many engineering fields including the shipbuilding industry, and many application systems for simulation have been developed. It is difficult, however, for a user to reuse the developed systems, because simulation models in the system are defined by its own method. In addition, the simulation model should be modified whenever a simulation sequence, which is called simulation scenario, is changed. Therefore, in this study, an elementary simulation object is proposed to modularize a simulation model. And the management scheme of simulation scenario is proposed to manage the scenario outside of the simulation models. Also, a simulation template is proposed to increase the development efficiency. To verify the efficiency of the proposed methods, application examples for shipbuilding process planning are implemented.

Combined discrete event and discrete time simulation framework for the improvement of shipbuilding process planning (조선 공정 계획의 수립 완성도 향상을 위한 이산 사건 및 이산 시간 혼합형 시뮬레이션 프레임워크)

  • Cha, Ju-Hwan;Roh, Myung-Il;Bang, Kyung-Woon;Lee, Kyu-Yeul
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.71-80
    • /
    • 2008
  • In this study, a simulation framework, which can support developing various simulation systems for the improvement of process planning in shipbuilding such as the block erection, the block turn-over, and so on, is proposed. In addition, a simulation kernel, which is a key component of the simulation framework, is implemented according to the concept of the combined discrete event and discrete time simulation. To evaluate the efficiency and applicability of the proposed simulation framework, it is applied to the block erection process in shipbuilding. The result shows that the proposed simulation framework can provide the consistent, integrated development environment for a simulation system, as compared with existing studies and commercial simulation systems.

  • PDF

Integrated Process Planning and Scheduling for Machining Operation in Shipbuilding (선각 내업 가공작업의 공정계획과 일정계획의 통합화 방안 연구)

  • Cho, Kyu-Kab;Oh, Jung-Soo;Kim, Young-Goo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.75-84
    • /
    • 1997
  • This paper describes the development of an integrating method for process planning and scheduling activities for block assembly in shipbuilding. A block is composed of several steel plates and steel sections with the predetermined shapes according to the ship design. The parts which constitute the block are manufac- tured by cutting and/or bending operations, which are termed as machining operation in this paper. The machining operation is the first process for block assembly which influences the remaining block assembly processes. Thus process planning and scheduling for machining operation to manufacture parts for block are very important to meet the assembly schedule in the shipyard. An integrating method for process plan- ning and scheduling is developed by introducing the concept of distributed process planning and scheduling composed of initial planning, alternative planning and final planning stages. In initial planning stage, nesting parts information and machining emthods are generated for each steel plate. In alternative plan- ning stage, machine groups are selected and workcenter dispatching information is generated. In final planning stage, cutting sequences are determined. The integrated system is tested by case study. The result shows that the integrated system is more efficient than existing manual planning system.

  • PDF

Development of Integrated Assembly Process Planning and Scheduling System in Shipbuilding (조선에서의 조립공정계획과 일정계획의 지능형 통합시스템 개발)

  • Cho, Kyu-Kab;Ryu, Kwang-Ryel;Choi, Hyung-Rim;Oh, Jung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.22-35
    • /
    • 1999
  • The block assembly process takes more than half of the total shipbuilding processes. Therefore, it is very important to have a practically useful block assembly process planning system which can build plans of maximum efficiency with minimum man-hours required. However, the process plans are often not readily executable in the assembly shops due to severe imbalance of workloads. This problem arises because the process planning is done on block by block basis in current practice without paying any attention to the load distribution among the assembly shops. this paper presents the development of an automated hull block assembly process planning system which results in the most effective use of production resources and also produces plans that enable efficient time management. If the load balance of assembly shops is to be considered at the time of process planning, the task becomes complicated because of the increased computational complexity. To solve this problem, a new approach is adopted in this research in which the load balancing function and process planning function are iterated alternately providing to each other contexts for subsequent improvement. The result of case study with the data supplied from the shipyard shows that the system developed in this research is very effective and useful.

  • PDF

Strategy Planning of Digital Shipbuilding Simulation byWorkflow Analysis of Production Planning in a Shipyard (조선소 생산계획 업무 프로세스 분석을 통한 디지털 선박생산 시뮬레이션 적용 전략 수립)

  • Lee, Kwangkook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1761-1768
    • /
    • 2013
  • Digital shipbuilding is a technology to reduce the total cost and lead time inevitably made by reschedule and rework in a shipyard. Strategic planning should be undertaken in order to have an effect on the applicable field. We aim at planning a strategy of digital shipbuilding technology by analysis of production planning workflow in this paper. In the basis of BPR methodology, the as-is business process is analyzed to build an workflow model, and derive the bottleneck business process. We dig into the inside details of the process to illustrate an diagram of the core improvement opportunities, and perform process simulation not only to create the application scenarios but also to expect the main effects. The application strategy will make a basic sketch to save both the production cost and time for high quality products in the shipyards.

System development for establishing shipyard mid-term production plans using backward process-centric simulation

  • Ju, Suheon;Sung, Saenal;Shen, Huiqiang;Jeong, Yong-Kuk;Shin, Jong Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.20-37
    • /
    • 2020
  • In this paper, we propose a simulation method based on backward simulation and process-oriented simulation to take into account the characteristics of shipbuilding production, which is an order-based industry with a job shop production environment. The shipyard production planning process was investigated to analyze the detailed process, variables and constraints of mid-term production planning. Backward and process-centric simulation methods were applied to the mid-term production planning process and an improved planning process, which considers the shipbuilding characteristics, was proposed. Based on the problem defined by applying backward process-centric simulation, a system which can conduct Discrete Event Simulation (DES) was developed. The developed mid-term planning system can be linked with the existing shipyard Advanced Planning System (APS). Verification of the system was performed with the actual shipyard mid-term production data for the four ships corresponding to a one-year period.