• Title/Summary/Keyword: Ship construction

Search Result 518, Processing Time 0.03 seconds

Development of Hydrographic Dredging Surveying and Construction Management System Based on Grab Dredger (그래브 준설선에 의한 해상준설측량 및 시공관리시스템의 개발)

  • Lee, Jin Duk;Lee, Jae Bin;Kim, Hyun Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.3-12
    • /
    • 2013
  • In order to evaluate dredging results scientifically the system which can manage and estimate working process by monitoring dredging process in real-time needs to be constructed. We constructed real-time dredging management system for guidance of a dredging vessel and for survey of dredging construction. This system was designed to have functions of dredger location by GPS, ship direction measurement by GPS/Gyroscope combination, Grab position measurement, dredging depth measurement and correction. In addition, we developed the programs for controlling and operating the constructed system. The system could induce the vessel to accurate position and conduct dredging according to plan and the effectiveness of the system was evaluated through the results of application to actual dredging construction site.

A Comparative Study for the Fatigue Assessment of Side Shell Longitudinals on 8,100 TEU Container Carrier using Hot Spot Stress and Structural Stress Approaches (구조응력 및 핫스팟 응력을 이용한 8,100 TEU 컨테이너선 선측 종늑골구조의 피로 강도 평가에 대한 비교 연구)

  • Kim, Seong-Min;Kim, Myung-Hyun;Kang, Sung-Won;Pyun, Jang-Hoon;Kim, Young-Nam;Kim, Sung-Geun;Lee, Kyong-Eon;Kim, Gyeng-Rae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.296-302
    • /
    • 2008
  • Recently, a mesh-size insensitive structural stress definition (structural stress method) is proposed that gives a stress state at weld toe with a relatively large mesh size. The structural stress definition is based on the elementary structural mechanics theory and provides an effective measure of a stress state in front of weld toe. In this study, a fatigue strength assessment for a side shell connection of a container vessel using both the hot spot stress and the Battelle structural stress method was carried out. A consistent approach to compute the extrapolated hot spot stress for design purpose is described and current fatigue guidance is evaluated. Fatigue strength predicted by the two methodologies, e.g. hot spot stress and structural stress approaches, at hot spot locations of a typical ship structure are compared and discussed.

A Study on the Welding Amount Estimation System combined with 3D CAD Tool (3차원 CAD 통합형 용접물량 산출 시스템에 관한 연구)

  • Ruy, Won-Sun;Kim, Ho-Kyeong;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3184-3190
    • /
    • 2013
  • These days, the great part of design processes in the field of ship or offshore manufacturing are planed and implemented using the customized CAD system for each ship-building companies. It means that all information for design and production could be extracted and reused at the useful other area cost considerable time and efforts. The representative example is the estimation of welding length and material amount which is demanded during the construction of ship or offshore structures. The proper estimation of welding material to be used and the usage of them at the stage of schedule planning is mostly important to achieve the seamless process of production and expect the costing in advance. This study is related to the calculation of welding length and needed material amount at the stage of design complete utilizing the CAD system. The calculated amount are classified according to welding position, stage, block, bevel and welding type. Moreover it is possible to predict the working time for welding operation and could be used efficiently for the cost management using the results of this research.

Stability Analysis of Low Flow Revetments on External Forces (저수호안에 작용하는 외력에 의한 안정성분석)

  • Kim, Chul;Park, Nam-Hee;Kim, Dae-Young;Kim, Yun-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.147-153
    • /
    • 2008
  • Tractive forces by flowing water and ship generated waves are items that affect the stability of the low flow revetments among various external forces exerting on those revetments. Bank revetment stability by these external forces is analysed in this study. The study area is the section of the test construction area changing the artificial revetments to ecological revetments in Han river. Tractive forces are computed using the calculated flow velocity using RMA-2 model. The stability is analyzed comparing the calculated tractive forces with permissible tractive forces of the revetments in the study area. The calculated tractive forces at section number 93 is higher than permissible tractive forces in that section, so the section is estimated hydraulically unstable. The calculated tractive forces for the storm of 10th August 2007 are small compared to the permissible tractive forces in all sections. The sections are considered to be hydraulically stable, but have been eroded in some parts. The reason for the erosion is considered to have insufficient time for the plants taking root, and be exerted composite forces such as forces by ship generated waves. Ship generated waves by the excursion boats and small boats called river taxi was calculated. Wave forces by these calculated waves are computed and compared with the supporting forces of the revetment material. The external forces exerted by the ships in Han River on the revetments is very little compared with the permissible supporting forces of the revetments, so the revetments are estimated hydraulically stable. But considering the composite forces are exerted simultaneously, the stability consideration should include these composite forces.

A study on the status of asbestos use on ships (선박에서의 석면 사용실태 연구)

  • Park, Seung-Hyun;Chung, Eun-Kyo;Kwon, Ji-Woon;Kim, Kab-Bae;Chung, Kwang-Jae;Yi, Gwang-Yong;Shin, Jung-Ah;Lee, In-Seop;Kang, Seong-Kyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.3
    • /
    • pp.123-127
    • /
    • 2011
  • Objectives: The purpose of this study was to investigate the status of asbestos-containing materials (ACMs) used on ships and to consider measures for preventing worker exposure to asbestos fibers. Methods: A total of 17 ships including 16 ships under repair and a ship under construction at shipyards in Korea were investigated. Bulk samples were collected from suspected ACMs on engine exhaust pipes, boiler steam pipes, generator exhaust pipes, and etc. in ships in order to identify the presence of ACMs. Types and contents of asbestos were determined using polarized light microscopy (PLM). Results: ACMs were found from 14 ships out of 17 ships investigated. Only chrysotile asbestos was found from all samples. ACMs were mainly found from samples collected at the exhaust pipes of the engine, generator and incinerator, and boiler steam pipes where exhaust gases or steam of high temperature pass through. In most cases, types of ACMs were asbestos-containing fabrics such as asbestos tape. Friable ACMs were also found in some cases. Use of ACMs on ships was relevant to built time and owner of the ships rather than type and tonnage of the ships. Conclusions: ACMs were found from most ships built prior to 2000s. Therefore, measures for preventing asbestos-related diseases such as preparation of asbestos map on the ship and installation of warning signs, hazard communication with workers (ship-repairing workers, engine room workers and etc.), and follow-up for worker's health management are needed.

Optimizing Total Transport Cost Incurred under Specific Port System: With a Case of Managing POSCO-owned Berths (특수항만구조하에서의 물류비용 최적화에 관한 연구 - 포항제철의 원료부두 사례를 중심으로 -)

  • Kim, Weon-Jae
    • Journal of Korea Port Economic Association
    • /
    • v.26 no.3
    • /
    • pp.42-55
    • /
    • 2010
  • This paper primarily deals with a decision-making for determining the number of voyages in each ship size under a specific port structure in order to minimize the total transport cost consisting of transport cost at sea, queuing cost in port, and inventory cost in yard. As a result of computer simulation using queuing model characterized by inter-arrival time distribution, we were able to find out some combination of voyage numbers of 3 ship-size(50,000-ton, 100,000-ton, and 200,000-ton), where the total transport cost can be minimized under a specific port structure. The simulation model also allows us to figure out any trade-off relationship among sea transport cost, queuing cost in port, and inventory cost in yard. Put it differently, an attempt to reduce the sea transport cost by increasing the number of voyages of the largest ship size, the transport cost incurred in both port and yard is hypothesized to be increased and vice versa. Consequently, Port managers are required to adjust the number of annual number of voyages allocated in each ship size, put into the sea lines for importing raw materials, in order to optimize the transport costs incurred under the specific port system. We may consider a net present value(NPV) model for performing an economic feasibility analysis on port investment project. If a total discounted net benefit, including cost savings, exceeds the initial investment for an additional berth construction, then we accept the port investment project. Otherwise, we reject the proposed port investment plan.

A Study on the Solutions of Guided Missile Attacks using 3-D RCS Data of Maritime Ship (함정의 3차원 RCS 측정 데이터를 활용한 유도탄 대응 기법 연구)

  • Gwak, Sang-Yell
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.552-557
    • /
    • 2020
  • The Radar Cross Section (RCS) is a virtual region indicating the strength of a wavelength at which a radar signal is reflected and received. As the ship's RCS represents its own stealth performance and survivability, efforts have been made in various areas from design to construction to reduce the RCS. The RCS can be predicted using design drawings and CAD models, but it is necessary to measure the RCS at sea since sea clutter and multipath reflections occur in the sea environment. However, such RCS predictions and measured values provide only a simple relative magnitude to the user, and there has not been much research on this topic. In this paper, a missile countermeasure technique was studied using 3D RCS measurement data in an operating environment. The elevation and azimuth angle of the ship viewed from the missile were estimated using the location information of the missile, and the RCS value was inverted by mapping it to previously measured 3D RCS measurement data. In addition, by using the movement information of the missile, the RCS observed by the missile could be predicted in advance, and this method can be used to propose a response plan based on the maneuvering and chaff system.

An Experimental Study on the Effect of Adoption of Special Rudders on Course Stability of a Ship (특수타의 채택이 침로 안정성에 미치는 영향에 관한 실험적 연구)

  • Sohn, K.H.;Kim, J.H.;Kim, H.S.;Kim, Y.S.;Ha, M.K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.27-37
    • /
    • 1997
  • The paper deals with the effectiveness of various special rudders on course stability of a ship. We adopted five types of rudder, such as one normal rudder and four special rudders, which contain two rudders with concave and convex strips on sides respectively, one flapped rudder, and one rudder with end plates on tips. In the circulating water channel, model test was carried out for measuring lift characteristics of the rudders in open water. And various captive model tests were also carried out for measuring the experimental constants related with helm angle and steering in hull-propeller-rudder system. From the test results, the changes in manoeuvring hydrodynamic derivatives due to adoption of normal and special rudders were predicted. Then course stability performances of a ship with normal and special rudders were evaluated and discussed. As a result, it is clarified that the rudder with concave or convex strips and flapped rudder have no effect on course stability, while the rudder with end plates improves course stability with effect. The result in this study is expected to be used usefully when the course stability is in issue and has to be improved without amendment of hull design at initial design phase or after construction of a ship.

  • PDF

A Study on the Necessity to Revise the Standards for the Main Dimensions of Liquefied Gas Carriers (액화가스운반선 주요치수에 대한 기준 개정 필요성에 관한 연구)

  • Yun, Gwi-ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.810-819
    • /
    • 2020
  • Recently, the demand for liquefied gas has been increasing for various reasons, including environmental problems, and as a result, transportation of liquefied gas through a ship is increasing, and several terminals are also being constructed to accommodate it. The size of the terminal to be constructed shall follow the result if the target ship is clearly determined. Otherwise, the size of the vessel that the terminal intends to accept shall be determined, and then, the dimensions of the vessel given in the regulations or standards shall be used. In this regard, it was found that the main dimensions of the proposed vessels are substantially different from those actually operating and the standard for large-sized vessels has not been established in the process of determining the size of the target vessel by using the "Port and Fishing Port Design Standards" and commentary(2017), which recently is most commonly used as port design criteria in order to construct the liquefied gas terminal. Because of these problems, a revision of the standard for the major dimensions of liquefied gas carriers was proposed through an analysis of the current status of ships in service, as there could be many differences between interested parties in determining the size of the target ships and terminals and evaluating the safety of terminals. It is expected that the proposed revision will be used as a more appropriate and realistic criterion for determining the size of ships and terminals in the future and will prevent unnecessary terminal construction costs.

Estimation of Coastal Terrain Differences by time-series using GSIS and The chart (GSIS를 이용한 해안 지형의 시계열 변화량 추출)

  • 양인태;한성만;최승필
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2002.04a
    • /
    • pp.219-228
    • /
    • 2002
  • Because western sea on the shore development is threatening sea ecosystem by decrease of silt and large size land-reclamation work by industrialization causes surrounding weather change and sea change, generate much changes bottom of the sea topography and coastline. Also, is influencing to route for safe entry into port of ship, departure. Therefore, this research did 0m boundary line, anxiety 2m line which appear to coastline of land portion and the border of silt using sea base level of lowest low tone side that is base line that appear because of sea waves to basis data numerical value Tuesday, numerical value by divide drawing that is changed to 4 area and analyze change degree of new airport construction and new town development, seashore by western sea district along the coast development of tide embankment construction and so on and bottom of the sea recognize.

  • PDF