• Title/Summary/Keyword: Shielding Analysis

Search Result 453, Processing Time 0.03 seconds

Implementation of waste silicate glass into composition of ordinary cement for radiation shielding applications

  • Eid, Mohanad S.;Bondouk, I.I.;Saleh, Hosam M.;Omar, Khaled M.;Sayyed, M.I.;El-Khatib, Ahmed M.;Elsafi, Mohamed
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1456-1463
    • /
    • 2022
  • The aim of this work is to study the radiation shielding properties of cement samples with waste glass incortated into its composition. The mass attenuation coefficient (MAC) of the samples were experimentally determined to evaluate their radiation shielding ability. The experimental coefficient was evaluated using NaI detector for gamma energies between 59.53 keV and 1408.01 keV using different radioactive point sources Am-241, Eu-152, Co-60, and Cs-137, and the gamma transmission parameters half-value layer, mean free path, and transmission factor were calculated. The theoretical coefficient of the composites was determined using Geant4 and XCOM software. The results were also compared against Geant4 and XCOM simulations by calculating the relative deviation between the values to determine the accuracy of the results. In addition the mechanical properties (including Compressive and porosity) as well as the thermogravimetric analysis were tested for the present samples. Overall, it was concluded that the cement sample with 50% waste glass has the greatest shielding potential for radiation shielding applications and is a useful way to reuse waste glass.

Design of MSR for Magnetic Field Shielding of Low Frequency (저주파 자기장 차폐를 위한 자기차폐실 설계)

  • Choi, Hak-Yun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.154-159
    • /
    • 2010
  • In this paper, the magnetically shielded room for low magnetic field shielding is designed and measured by fabricated. The size of magnetically shielded room was 3.0[m](W)$\times$3.0[m](L)$\times$3.0[m](H) to enter the industrial measuring instruments and analyzed DC and AC shielding characteristics of magnetic materials with a high permeability and AC shielding characteristics by eddy current of conductive materials. As a results, shielded room dimensions were obtained. To verify the analysis results, magnetically shielded room is fabricated and the calculated results are compared with the measured results. The Measured results show good agreement with calculated results. According to measurements, 5 times of 0.1[Hz] and 86 times of 60[Hz] is achieved at low frequency. The fabricated shielding room can be used as the magnetically shielding room for low magnetic field shielding.

Analysis of Shielding Effect on Gamma Radiation of Magnetic Aggregate Concrete Applied to Protective Facility (군 방호시설에 자철석 콘크리트 적용 시 감마선 차폐효과 분석)

  • Lee, Sang-Kyu;Lee, Ho-Chan;Lee, Gun-Woo;Han, Da-Hee;Park, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.2
    • /
    • pp.129-135
    • /
    • 2020
  • The purpose of this research is to analyze the gamma ray shielding effect of heavy concrete containing magnetic aggregate and to confirm the applicability to the military protective facilities. In general, a military concrete structure protects combatants from bullets, and also it provides some radiation shielding. In this research, experiments were conducted using a Cs-137 source to check the gamma ray shielding effect. In addition, the Monte Carlo N-Particle(MCNP) modeling was applied to evaluate the gamma ray shielding effect of a military structure. As a result, as the concrete thickness increased, the shielding performance improved according th the linear attenuation law. With that, as the ratio of magnetic aggregate was increased, gamma ray shielding performance was also improved. Therefore, this research verified that the application of magnetic aggregate concrete to military facilities for radiation shielding purposes would be useful.

Analysis of Scattering Rays and Shielding Efficiency through Lead Shielding for 0.511 MeV Gamma Rays Based on Skin Dose (피부선량을 기준으로 0.511 MeV 감마선에 대한 납 차폐체의 산란선 및 차폐 효율 분석)

  • Jang, Dong-Gun;Park, Eun-Tae
    • Journal of radiological science and technology
    • /
    • v.43 no.4
    • /
    • pp.259-264
    • /
    • 2020
  • Radiation causes radiation hazards in the human body. In Korea, a case of radiation necrosis occurred in 2014. In this study, the scatter and shielding efficiency according to lead shielding were classified into epidermis and dermis for 0.511 MeV used in nuclear medicine. In this study, experiments were conducted using the slab phantom that represents calibration and the dose of human trunk. Experimental results showed that the shielding rate of 0.25 mmPb was 180% in the epidermis and 96% in the dermis. Shielding at 0.5mmPb showed shielding rates of 158%in the epidermis and 82% in the dermis. As a result of measuring the absorbed dose by subdividing the thickness of the dermis into 0.5 mm intervals, when the shielding was carried out at 0.25 mmPb, the dose appeared to be about 120% at 0.5 mm of the dermis surface, and the dose was decreased at the subsequent depth. Shielding at 0.5 mmPb, the dose appeared to be about 101% at the surface 0.5 mm, and the dose was measured to decrease at the subsequent depth. This result suggests that when lead aprons are actually used, the scattering rays would be sufficiently removed due to the spaces generated by the clothes and air, Therefore, the scattered ray generated from lead will not reach the human body. The ICRU defines the epidermis (0.07), in which the radiation-induced damage of the skin occurs, as the dose equivalent. If the radiation dose of the dermis is considered in addition, it will be helpful for the evaluation of the prognosis for radiation hazard of the skin.

Study on the Development of an Outdoor Radiographic Test Shield Using 3D Printer Filament Materials (3D 프린터 필라멘트 재료를 이용한 야외 방사선투과검사용 차폐체 개발을 위한 연구)

  • Mun, Ik-Gi;Shin, Sang-Hwa
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.565-572
    • /
    • 2019
  • In this study, shielding analysis of material and thickness of 3D printer filaments was performed for the manufacture of custom shielding by radiation workers during outdoor radiographic test. The shielding was attached to the ICRU Slab Phantom after selecting the voxel source $^{192}Ir$ and $^{75}Se$ through simulation using MCNPX, and the distance between the source and the slab Phantom was set at 100 cm. The 12 shielding materials were divided into 5 mm units up to 200 mm from the absence of shielding materials to evaluate the energy absorbed per unit mass of each shielding material. The results showed that the shielding effect was high in the order of ABS + Tungsten, ABS + Bismuth, PLA + Copper, PLA + Iron from all sources of radiographic test. However, compared to lead, the shielding effect was somewhat lower. Based on this study in the future, further study of the atomic number and the high density filament material is necessary.

Study on the Electromagnetic Shielding of Accessory Device without Electromagnetic Shielding Technology in the Magnetic Resonance Room (자기공명검사실 내 전자기파 차단이 이루어지지 않은 부속장치의 차폐에 관한 연구)

  • Son, Soon-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.2
    • /
    • pp.431-436
    • /
    • 2021
  • In this study, a new shielding method was applied to an accessory device that produces electromagnetic waves in the magnetic resonance room to prevent the generation of artifact caused by electromagnetic waves. The research method applied a new shielding made of metal plating fiber to patient surveillance CCTVs without shielding technology, and obtained and evaluated noise map when the power was not cut off and when the new shielding technology was applied without shutting down the CCTV. As a result of the study, it was found that there was at least one group with significant differences. Type I and type III belonged to group 1 while type II belonged to group 2 in the Post-hoc analysis, which meant blocking power of the CCTV and the applying new shielding technology were in the same group. In conclusion, if electromagnetic waves are generated due to additional accessories in the scanning room, the shielding material proposed in this study should be applied which enables the electric state become similar to type I, not generating noise, thereby preventing the artifacts caused by electromagnetic waves.

Development and Efficiency Evaluation of Auxiliary Shielding using Elbow Support (팔꿈치 지지대를 사용한 보조 차폐 기구의 개발 및 효용성 평가)

  • Hyun-Woo Im;Jae-Suk Kim;Dong-Gu Kang
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.1
    • /
    • pp.11-20
    • /
    • 2024
  • As the importance of intervention has recently increased, interest in the health of medical staff performing the procedure is increasing. Existing radiation shielding devices have limited the operator's movement and have not been properly used due to the risk of infection, and adequate radiation shielding of the operator's gonads and furthermore, the entire area of the procedure room has not been achieved. An auxiliary shielding device was manufactured by attaching a Bismuth to the elbow support used in the procedure, and the radiation shielding effect was measured. As a result of the measurement, the average spatial dose rate decreased by about 64.8%, and the independent sample t-test analysis showed statistically significant below the significance probability (p<0.05). The use of an auxiliary shielding device is considered to be an effective shielding method that can shield the operator's gonads and reduce the radiation spatial dose rate of the entire area of the procedure room.

SHIELDING ANALYSIS OF DUAL PURPOSE CASKS FOR SPENT NUCLEAR FUEL UNDER NORMAL STORAGE CONDITIONS

  • Ko, Jae-Hun;Park, Jea-Ho;Jung, In-Soo;Lee, Gang-Uk;Baeg, Chang-Yeal;Kim, Tae-Man
    • Nuclear Engineering and Technology
    • /
    • v.46 no.4
    • /
    • pp.547-556
    • /
    • 2014
  • Korea expects a shortage in storage capacity for spent fuels at reactor sites. Therefore, a need for more metal and/or concrete casks for storage systems is anticipated for either the reactor site or away from the reactor for interim storage. For the purpose of interim storage and transportation, a dual purpose metal cask that can load 21 spent fuel assemblies is being developed by Korea Radioactive Waste Management Corporation (KRMC) in Korea. At first the gamma and neutron flux for the design basis fuel were determined assuming in-core environment (the temperature, pressure, etc. of the moderator, boron, cladding, $UO_2$ pellets) in which the design basis fuel is loaded, as input data. The evaluation simulated burnup up to 45,000 MWD/MTU and decay during ten years of cooling using the SAS2H/OGIGEN-S module of the SCALE5.1 system. The results from the source term evaluation were used as input data for the final shielding evaluation utilizing the MCNP Code, which yielded the effective dose rate. The design of the cask is based on the safety requirements for normal storage conditions under 10 CFR Part 72. A radiation shielding analysis of the metal storage cask optimized for loading 21 design basis fuels was performed for two cases; one for a single cask and the other for a $2{\times}10$ cask array. For the single cask, dose rates at the external surface of the metal cask, 1m and 2m away from the cask surface, were evaluated. For the $2{\times}10$ cask array, dose rates at the center point of the array and at the center of the casks' height were evaluated. The results of the shielding analysis for the single cask show that dose rates were considerably higher at the lower side (from the bottom of the cask to the bottom of the neutron shielding) of the cask, at over 2mSv/hr at the external surface of the cask. However, this is not considered to be a significant issue since additional shielding will be installed at the storage facility. The shielding analysis results for the $2{\times}10$ cask array showed exponential decrease with distance off the sources. The controlled area boundary was calculated to be approximately 280m from the array, with a dose rate of 25mrem/yr. Actual dose rates within the controlled area boundary will be lower than 25mrem/yr, due to the decay of radioactivity of spent fuel in storage.

Simple Calculation Method as a Supplementary Radiation Safety Assessment for Facility with Radiation Generator

  • Kim, Sang-Tae
    • International Journal of Contents
    • /
    • v.14 no.4
    • /
    • pp.65-69
    • /
    • 2018
  • The objective of this study was to conduct a radiation shielding analysis for the facility equipped with radiation generator. The analysis was carried out in two aspects. First, from the aspect of the effect caused by primary and leakage radiation. Second, effect of scattered radiation was evaluated by applying a simple calculation method based on a scattering rate concept since effect of scattered radiation is significantly important at maze entrance of the radiation facility. The calculated results obtained using the simple method were compared to the results calculated using Geant4 code and the measured values. The results calculated by the suggested method indicate that slight error exists in a radiation shielding analysis done at the maze entrance comparing to other two results, while the results evaluated at the outside of the maze entrance door are relatively consistent with other values.

A Study on the Performance Measurement System for the Reinforced Concrete Structure Electromagnetic Shielding Wall (철근 콘크리트 구조 전자파 차폐 벽체에 대한 성능측정 시스템 연구)

  • Kim, Bo-Hyun;Cho, Kyeong-Yong;Park, In-Wook;Oh, Jae-Hyun;Lee, Sang-Hoon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.492-498
    • /
    • 2021
  • In this paper, the electromagnetic wave transmittance of the reinforced concrete structure wall was analyzed using the performance measurement system of electromagnetic wave shielding. Recently, electromagnetic wave shielding technologies on the reinforced concrete wall conditions have been studied, and the shielding effectiveness have been tested on unit cell size. However, the unit cell size tests have problems on that the measurement range for shielding performance is insufficient and it is difficult to reflect the real conditions of the concrete wall. Therefore, we constructed a shielding performance measurement system using a large sample of 2.2m × 2.2m like a real wall. To verify the measurement system, general reinforced concrete test samples were selected, and real shielding performance measurements and numerical analysis were proceeded. Test and numerical analysis results showed similar tendencies in the evaluation frequency range of 75MHz to 2GHz. Thus we validated the effectiveness of this shielding performance measurement system.