• Title/Summary/Keyword: Shewhart control chart

Search Result 87, Processing Time 0.021 seconds

Design of Combined Shewhart-CUSUM Control Chart using Bootstrap Method (Bootstrap 방법을 이용한 결합 Shewhart-CUSUM 관리도의 설계)

  • 송서일;조영찬;박현규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.4
    • /
    • pp.1-7
    • /
    • 2002
  • Statistical process control is used widely as an effective tool to solve the quality problems in practice fields. All the control charts used in statistical process control are parametric methods, suppose that the process distributes normal and observations are independent. But these assumptions, practically, are often violated if the test of normality of the observations is rejected and/or the serial correlation is existed within observed data. Thus, in this study, to screening process, the Combined Shewhart - CUSUM quality control chart is described and evaluated that used bootstrap method. In this scheme the CUSUM chart will quickly detect small shifts form the goal while the addition of Shewhart limits increases the speed of detecting large shifts. Therefor, the CSC control chart is detected both small and large shifts in process, and the simulation results for its performance are exhibited. The bootstrap CSC control chart proposed in this paper is superior to the standard method for both normal and skewed distribution, and brings in terms of ARL to the same result.

Statistical design of Shewhart control chart with runs rules (런 규칙이 혼합된 슈와르트 관리도의 통계적 설계)

  • Kim, Young-Bok;Hong, Jung-Sik;Lie, Chang-Hoon
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.3
    • /
    • pp.34-44
    • /
    • 2008
  • This research proposes a design method based on the statistical characteristics of the Shewhart control chart incorporated with 2 of 2 and 2 of 3 runs rules respectively. A Markov chain approach is employed in order to calculate the in-control and out-of-control average run lengths(ARL). Two different control limit coefficients for the Shewhart scheme and the runs rule scheme are derived simultaneously to minimize the out-of-control average run length subject to the reasonable in-control average run length. Numerical examples show that the statistical performance of the hybrid control scheme are superior to that of the original Shewhart control chart.

A Study on the Adjustment Synthetic Control Chart Pattern for Detecting Shifts using Individual Observations in Start-Up Process (초기공정에서 공정변화에 대한 개별 관측치를 이용한 수정된 합성 관리도 연구)

  • 지선수
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.4
    • /
    • pp.53-58
    • /
    • 2002
  • This paper presents a adjustment synthetic control chart that is an integration of the Shewhart X chart and the conforming run length(CRL) chart. The application of the adjustment synthetic control chart my therefore substantially enhance the effectiveness process control for manufacturing. In the synthetic control chart, denotes the average number of the X sample required to detect a process shift. The synthetic control chart outperforms the EWM chart and the X chart when σ is greater than 0.75σ. And the X-CRL charts suggested above evaluate using the conditional probability.

  • PDF

Performances of VSI Multivariate Control Charts with Accumulate-Combine Approach

  • Chang, Duk-Joon;Heo, Sun-Yeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.973-982
    • /
    • 2006
  • Performances of variable sampling interval(VSI) multivariate control charts with accumulate-combine approach for monitoring mean vector of p related quality variables were investigated. Shewhart control chart is also proposed to compare the performances of CUSUM and EWMA charts. Numerical comparisons show that performances of CUSUM and EWMA charts are more efficient than Shewhart chart for small or moderate shifts, and VSI chart is more efficient than fixed sampling interval(FSI) chart. We also found that performances of the CUSUM or EWMA chart with accumulate-combine approach are substantially efficient than those of Shewhart chart.

  • PDF

Investigate Study on the relation between Multivariate SPC and Autoregressed Algorithm (다변량 SPC와 자기회귀알고리즘의 연계를 위한 조사연구)

  • Jung, Hae-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.04a
    • /
    • pp.675-693
    • /
    • 2011
  • We compare three Techniques control systems with The Investigate Study on the relation between Multivariate SPC and Autoregressed Algorithm. We also investigate Autoregressed Algorithm with relevant EWMA, CUSUM, Shewhart chart, Precontrol chart and Process Capacity.

  • PDF

Multivariate Process Control Chart for Controlling the False Discovery Rate

  • Park, Jang-Ho;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.4
    • /
    • pp.385-389
    • /
    • 2012
  • With the development of computer storage and the rapidly growing ability to process large amounts of data, the multivariate control charts have received an increasing attention. The existing univariate and multivariate control charts are a single hypothesis testing approach to process mean or variance by using a single statistic plot. This paper proposes a multiple hypothesis approach to developing a new multivariate control scheme. Plotted Hotelling's $T^2$ statistics are used for computing the corresponding p-values and the procedure for controlling the false discovery rate in multiple hypothesis testing is applied to the proposed control scheme. Some numerical simulations were carried out to compare the performance of the proposed control scheme with the ordinary multivariate Shewhart chart in terms of the average run length. The results show that the proposed control scheme outperforms the existing multivariate Shewhart chart for all mean shifts.

Optimal Designs for Attribute Control Charts

  • Chung, Sung-Hee;Park, Sung-Hyun;Park, Jun-Oh
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.97-103
    • /
    • 2003
  • Shewhart-type control charts have historically been used for attribute data, though they have ARL biased property and even are unable to detect the improvement of a process with some process parameters. So far most efforts have been made to improve the performance of attribute control charts in terms of faster detection of special causes without increasing the rates of false alarm. In this paper, control limits are proposed that yield an ARL (nearly) unbiased chart for attributes. Optimal design is also proposed for attribute control charts under a natural sense of criterion.

  • PDF

Multiparameter CUSUM charts with variable sampling intervals

  • Im, Chang-Do;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.3
    • /
    • pp.593-599
    • /
    • 2009
  • We consider the problem of using control charts to monitor more than one parameter with emphasis on simultaneously monitoring the mean and variance. The fixed sampling interval (FSI) control charts are modified to use variable sampling interval (VSI) control charts depending on what is being observed from the data. In general, approaches of monitoring the mean and variance simultaneously is to use separate charts for each parameter and a combined chart. In this paper, we use three basic strategies which are separate Shewhart charts for each parameter, a combined Shewhart chart and a combined CUSUM chart. We showed that a combined VSI CUSUM chart is comparatively more efficient than any other chart if the shifts in both mean and variance are small.

  • PDF

Optimal design of a nonparametric Shewhart-Lepage control chart (비모수적 Shewhart-Lepage 관리도의 최적 설계)

  • Lee, Sungmin;Lee, Jaeheon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.339-348
    • /
    • 2017
  • One of the major issues of statistical process control for variables data is monitoring both the mean and the standard deviation. The traditional approach to monitor these parameters is to simultaneously use two seperate control charts. However there have been some works on developing a single chart using a single plotting statistic for joint monitoring, and it is claimed that they are simpler and may be more appealing than the traditonal one from a practical point of view. When using these control charts for variables data, estimating in-control parameters and checking the normality assumption are the very important step. Nonparametric Shewhart-Lepage chart, proposed by Mukherjee and Chakraborti (2012), is an attractive option, because this chart uses only a single control statistic, and does not require the in-control parameters and the underlying continuous distribution. In this paper, we introduce the Shewhart-Lepage chart, and propose the design procedure to find the optimal diagnosis limits when the location and the scale parameters change simultaneously. We also compare the efficiency of the proposed method with that of Mukherjee and Chakraborti (2012).

A statistical quality control for the dispersion matrix

  • Jo, Jinnam
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.4
    • /
    • pp.1027-1034
    • /
    • 2015
  • A control chart is very useful in monitoring various production process. There are many situations in which the simultaneous control of two or more related quality variables is necessary. When the joint distribution of the process variables is multivariate normal, multivariate Shewhart control charts using the function of the maximum likelihood estimator for monitoring the dispersion matrix are considered for the simultaneous monitoring of the dispersion matrix. The performances of the multivariate Shewhart control charts based on the proposed control statistic are evaluated in term of average run length (ARL). The performance is investigated in three cases, where the variances, covariances, and variances and covariances are changed respectively. The numerical results show that the performances of the proposed multivariate Shewhart control charts are not better than the control charts using the trace of the covariance matrix in the Jeong and Cho (2012) in terms of the ARLs.