• Title/Summary/Keyword: Shewhart chart

Search Result 91, Processing Time 0.03 seconds

Design of Combined Shewhart-CUSUM Control Chart using Bootstrap Method (Bootstrap 방법을 이용한 결합 Shewhart-CUSUM 관리도의 설계)

  • 송서일;조영찬;박현규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.4
    • /
    • pp.1-7
    • /
    • 2002
  • Statistical process control is used widely as an effective tool to solve the quality problems in practice fields. All the control charts used in statistical process control are parametric methods, suppose that the process distributes normal and observations are independent. But these assumptions, practically, are often violated if the test of normality of the observations is rejected and/or the serial correlation is existed within observed data. Thus, in this study, to screening process, the Combined Shewhart - CUSUM quality control chart is described and evaluated that used bootstrap method. In this scheme the CUSUM chart will quickly detect small shifts form the goal while the addition of Shewhart limits increases the speed of detecting large shifts. Therefor, the CSC control chart is detected both small and large shifts in process, and the simulation results for its performance are exhibited. The bootstrap CSC control chart proposed in this paper is superior to the standard method for both normal and skewed distribution, and brings in terms of ARL to the same result.

Statistical design of Shewhart control chart with runs rules (런 규칙이 혼합된 슈와르트 관리도의 통계적 설계)

  • Kim, Young-Bok;Hong, Jung-Sik;Lie, Chang-Hoon
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.3
    • /
    • pp.34-44
    • /
    • 2008
  • This research proposes a design method based on the statistical characteristics of the Shewhart control chart incorporated with 2 of 2 and 2 of 3 runs rules respectively. A Markov chain approach is employed in order to calculate the in-control and out-of-control average run lengths(ARL). Two different control limit coefficients for the Shewhart scheme and the runs rule scheme are derived simultaneously to minimize the out-of-control average run length subject to the reasonable in-control average run length. Numerical examples show that the statistical performance of the hybrid control scheme are superior to that of the original Shewhart control chart.

A Study on the Adjustment Synthetic Control Chart Pattern for Detecting Shifts using Individual Observations in Start-Up Process (초기공정에서 공정변화에 대한 개별 관측치를 이용한 수정된 합성 관리도 연구)

  • 지선수
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.4
    • /
    • pp.53-58
    • /
    • 2002
  • This paper presents a adjustment synthetic control chart that is an integration of the Shewhart X chart and the conforming run length(CRL) chart. The application of the adjustment synthetic control chart my therefore substantially enhance the effectiveness process control for manufacturing. In the synthetic control chart, denotes the average number of the X sample required to detect a process shift. The synthetic control chart outperforms the EWM chart and the X chart when σ is greater than 0.75σ. And the X-CRL charts suggested above evaluate using the conditional probability.

  • PDF

Investigate Study on the relation between Multivariate SPC and Autoregressed Algorithm (다변량 SPC와 자기회귀알고리즘의 연계를 위한 조사연구)

  • Jung, Hae-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.04a
    • /
    • pp.675-693
    • /
    • 2011
  • We compare three Techniques control systems with The Investigate Study on the relation between Multivariate SPC and Autoregressed Algorithm. We also investigate Autoregressed Algorithm with relevant EWMA, CUSUM, Shewhart chart, Precontrol chart and Process Capacity.

  • PDF

Performances of VSI Multivariate Control Charts with Accumulate-Combine Approach

  • Chang, Duk-Joon;Heo, Sun-Yeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.973-982
    • /
    • 2006
  • Performances of variable sampling interval(VSI) multivariate control charts with accumulate-combine approach for monitoring mean vector of p related quality variables were investigated. Shewhart control chart is also proposed to compare the performances of CUSUM and EWMA charts. Numerical comparisons show that performances of CUSUM and EWMA charts are more efficient than Shewhart chart for small or moderate shifts, and VSI chart is more efficient than fixed sampling interval(FSI) chart. We also found that performances of the CUSUM or EWMA chart with accumulate-combine approach are substantially efficient than those of Shewhart chart.

  • PDF

A Comparative Analysis on the Efficiency of Monitoring between EWMA and Shewhart Chart in Instrumental Process with Autocorrelation (자기상관이 있는 장치 공정에서 EWMA와 Shewhart 관리도와의 모니터링 효율성 비교 분석)

  • Cho, Jin-Hyung;Oh, Hyun-Seung;Lee, Sae-Jae;Jung, Su-Il;Lim, Taek;Baek, Seong-Seon;Kim, Byung-Keug
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.118-125
    • /
    • 2012
  • When monitoring an instrumental process, one often collects a host of data such as characteristic signals sent by a sensor in short time intervals. Characteristic data of short time intervals tend to be autocorrelated. In the instrumental processes often the practice of adjusting the setting value simply based on the previous one, so-called 'adjacent point operation', becomes more critical, since in the short run the deviations are harder to detect and in the long run they have amplified consequences. Stochastic modelling using ARIMA or AR models are not readily usable here. Due to the difficulty of dealing with autocorrelated data conventional practice is resorting to choosing the time interval where autocorrelation is weak enough then to using I-MR control chart to judge the process stability. In the autocorrelated instrumental processes it appears that using the Shewhart chart and the time interval data where autocorrelation is relatively not existent turns out to be a rather convenient and very useful practice to determine the process stability. However in the autocorrelated instrumental processes we intend to show that one would presumably do better using the EWMA control chart rather than just using the Shewhart chart along with some arbitrarily intervalled data, since the former is more sensitive to shifts given appropriate weights.

Multivariate Process Control Chart for Controlling the False Discovery Rate

  • Park, Jang-Ho;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.4
    • /
    • pp.385-389
    • /
    • 2012
  • With the development of computer storage and the rapidly growing ability to process large amounts of data, the multivariate control charts have received an increasing attention. The existing univariate and multivariate control charts are a single hypothesis testing approach to process mean or variance by using a single statistic plot. This paper proposes a multiple hypothesis approach to developing a new multivariate control scheme. Plotted Hotelling's $T^2$ statistics are used for computing the corresponding p-values and the procedure for controlling the false discovery rate in multiple hypothesis testing is applied to the proposed control scheme. Some numerical simulations were carried out to compare the performance of the proposed control scheme with the ordinary multivariate Shewhart chart in terms of the average run length. The results show that the proposed control scheme outperforms the existing multivariate Shewhart chart for all mean shifts.

An Economic Design of $\bar{X}$ Control Charts with Variable Sample Size and Sampling Interval (변량표본크기와 변량표본추출구간을 이용한$\bar{X}$관리도의 경제적 설계)

  • 김계완;윤덕균
    • Journal of Korean Society for Quality Management
    • /
    • v.28 no.3
    • /
    • pp.18-30
    • /
    • 2000
  • Recent studies have shown that the $\bar{X}$ chart with variable sampling intervals(VSI) and the $\bar{X}$ chart with variable sample size(VSS) are much quicker than Shewhart $\bar{X}$ chart in detecting shiks in the process. Shewhart $\bar{X}$ chart has been beneficial to detect large shifts but it is hard to apply Shewhart $\bar{X}$ chart in detecting moderate shifts in the process mean. In this article the $\bar{X}$ chart using variable sample size(VSS) and variable sampling Intervals(VSI) has been proposed to supplement the weak point mentioned above. So the purpose of this paper is to consider finding the design parameters which minimize expected loss costs for unit process time and measure the performance of VSSI(variable sample size and sampling interval) $\bar{X}$ chart. It is important that assignable causes be detected to maintain the process controlled. This paper has been studied under the assumption that one cycle is from starting of the process to eliminating the assignable causes in the process. The other purpose of this article is to represent the expected loss costs in one cycle with three process parameters(sample size, sampling interval and control limits) function and find the three parameters.

  • PDF

Optimal design of a nonparametric Shewhart-Lepage control chart (비모수적 Shewhart-Lepage 관리도의 최적 설계)

  • Lee, Sungmin;Lee, Jaeheon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.339-348
    • /
    • 2017
  • One of the major issues of statistical process control for variables data is monitoring both the mean and the standard deviation. The traditional approach to monitor these parameters is to simultaneously use two seperate control charts. However there have been some works on developing a single chart using a single plotting statistic for joint monitoring, and it is claimed that they are simpler and may be more appealing than the traditonal one from a practical point of view. When using these control charts for variables data, estimating in-control parameters and checking the normality assumption are the very important step. Nonparametric Shewhart-Lepage chart, proposed by Mukherjee and Chakraborti (2012), is an attractive option, because this chart uses only a single control statistic, and does not require the in-control parameters and the underlying continuous distribution. In this paper, we introduce the Shewhart-Lepage chart, and propose the design procedure to find the optimal diagnosis limits when the location and the scale parameters change simultaneously. We also compare the efficiency of the proposed method with that of Mukherjee and Chakraborti (2012).

Multiparameter CUSUM charts with variable sampling intervals

  • Im, Chang-Do;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.3
    • /
    • pp.593-599
    • /
    • 2009
  • We consider the problem of using control charts to monitor more than one parameter with emphasis on simultaneously monitoring the mean and variance. The fixed sampling interval (FSI) control charts are modified to use variable sampling interval (VSI) control charts depending on what is being observed from the data. In general, approaches of monitoring the mean and variance simultaneously is to use separate charts for each parameter and a combined chart. In this paper, we use three basic strategies which are separate Shewhart charts for each parameter, a combined Shewhart chart and a combined CUSUM chart. We showed that a combined VSI CUSUM chart is comparatively more efficient than any other chart if the shifts in both mean and variance are small.

  • PDF