• Title/Summary/Keyword: Shear-Bond Strength

Search Result 858, Processing Time 0.025 seconds

Application of Super Retarding Agent for Integration of Construction Joints (시공줄눈의 일체화를 위한 초지연제의 활용)

  • Hyun, Seung-Yong;Lim, Gun-Su;Jeong, Yeong-Jin;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.15-16
    • /
    • 2022
  • This study is to confirm the integration performance of joints according to the method of applying the super retarding agent. When the super-delay system was applied, the integration performance was found to decrease somewhat on the 7th day of age. In the case of the 28th of age, it was found that the integration performance is improved. When a diluent is injected and a super delay agent is sprayed, shear bond strength is the highest.

  • PDF

Shear bond strength of luting cements to fixed superstructure metal surfaces under various seating forces

  • Ozer, Fusun;Pak-Tunc, Elif;Dagli, Nesrin Esen;Ramachandran, Deepika;Sen, Deniz;Blatz, Markus Bernhard
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.340-346
    • /
    • 2018
  • PURPOSE. In this study, the shear bond strengths (SBS) of luting cements to fixed superstructure metal surfaces under various seating forces were investigated. MATERIALS AND METHODS. Seven different cements [Polycarboxylate (PCC), Glass-Ionomer (GIC), Zinc phospahate (ZPC), Self-adhesive resin (RXU), Resin (C&B), and Temporary cements ((RXT) and (TCS))] were bonded to a total number of 224 square blocks ($5{\times}5{\times}3mm$) made of one pure metal [Titanium (CP Ti) and two metal alloys [Gold-Platinum (Au-Pt) and Cobalt-Chrome (Co-Cr)] under 10 N and 50 N seating forces. SBS values were determined and data were analyzed with 3-way ANOVA. Pairwise comparisons and interactions among groups were analyzed with Tukey's simultaneous confidence intervals. RESULTS. Overall mean scores indicated that Co-Cr showed the highest SBS values ($1.96{\pm}0.4$) (P<.00), while Au-Pt showed the lowest among all metals tested ($1.57{\pm}0.4$) (P<.00). Except for PCC/CP Ti, RXU/CP Ti, and GIC/Au-Pt factor level combinations (P<.00), the cements tested under 10 N seating force showed no significantly higher SBS values when compared to the values of those tested under 50 N seating force (P>.05). The PCC cement showed the highest mean SBS score ($3.59{\pm}0.07$) among all cements tested (P<.00), while the resin-based temporary luting cement RXT showed the lowest ($0.39{\pm}0.07$) (P<.00). CONCLUSION. Polycarboxylate cement provides reliable bonding performance to metal surfaces. Resin-based temporary luting cements can be used when retrievability is needed. GIC is not suitable for permanent cementation of fixed dental prostheses consisting of CP Ti or Au-Pt substructures.

BONDING OF RESIN INLAY TO GLASS-IONOMER BASE WITH VARIOUS TREATMENTS ON INLAY SURFACE (내표면 처리에 따른 레진 인레이와 글래스아이오노머 베이스간의 접착)

  • Jang, Byung-Sung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.399-406
    • /
    • 2000
  • The effect of inlay surface treatment on bonding was investigated when resin inlay was bonded to resin-modified glass-ionomer base with resin cement. For the preparation of glass-ionomer base, resin-modified glass-ionomer cement (Fuji II LC, GC Co., Japan) was filled in class I cavities of 7mm in diameter and 2mm in depth made in plastic molds. Eighty eight resin inlay specimens were made with Charisma$^{(R)}$ (Kulzer, Germany) and then randomly assigned to the four different surface treatment conditions: Group I, $50{\mu}m$ aluminium oxide sandblasting and silane treatment ; Group II, silane treatment alone ; Group III, sandblasting alone, and Group IV (control), no surface treatment. After a dentin bonding agent with primer (One-Step$^{TM}$, Bisco Inc., IL., U.S.A.) was applied to bonding surface of resin inlay and base, resin inlay were cemented to glass-ionomer base with a resin cement (Choice$^{TM}$, Bisco Inc., IL., U.S.A.). Shear bond strengths of each specimens were measured using Instron universal testing machine (4202 Instron, lnstron Co., U.S.A.) and fractured surfaces were examined under the stereoscope. Statistical analysis was done with one-way ANOVA and Dunkan's multiple range test. The results were as follows: 1. Sandblasting and silane treatment provided the greatest bond strength(10.56${\pm}$1.95 MPa), and showed a significantly greater bond strength than sandblasting alone or no treatment (p<0.05). 2. Silane treatment provided a significantly greater bond strength(9.77${\pm}$2.04 MPa) than sandblasting alone or no treatment (p<0.05). However, there was no significant difference in bond strength between sandblasting treatment and silane one (p>0.05). 3. Sandblasting alone provided no significant difference in bond strength from no treatment (p>0.05). 4. Stereoscopic examination of fractured surface showed that sandblasting and silane treatment or silane treatment alone had more cohesive failure mode than adhesive failure mode. 5. In relationship between shear bond strength and failure mode, cohesive failure occurred more frequently as bond strength increased.

  • PDF

Effects of Ozonized Soybean Oil to Changes of Chemical Structures and Bond Strength of pMD (오존산화 처리한 콩기름을 이용한 변성 pMDI 접착제의 화학 구조 및 접착력 변화)

  • You, Young Sam;Lee, Hyun Jong;Lee, Taek Jun;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.37-43
    • /
    • 2008
  • The research attempted to develop an eco-friendly wood adhesive based on vegetable oil (soybean oil), the renewable and sustainable natural resources, using ozonification technology for the chemical structure modification. The soybean oils (SBO) were reacted with $O_3$ at the rate of 7.13 g/h for different times, 15 minutes, 30 minutes, 60 minutes, and 120 minutes. Modified chemical structure of the ozonized SBOs were examined by Fourier transform Infrared (FT-IR) spectrum. The FT-IR spectrum of SBO had an absorbance peak at $3010cm^{-1}$ that is the characteristic peak of the unsaturated double bonds. As ozone treatment time increased, the peak of the double bond was disappeared and aldehyde or carboxyl peak appeared at $1700cm^{-1}$. The dry, wet, and cyclic boiling bond strengths of the ozonized SBO mixed with polymeric diphenylmethane-4, 4-diisocyanate (pMDI) were also investigated. In the dry shear test, all strengths met constantly the standard requirement of $7.0kgf/cm^2$ (KS F3101 2006). The bond strengths gradually increased with increasing ozone treatment time. The highest strength showed at 60 minutes ozone treatment and decreased values at 120 minutes. In the cyclic boiling shear test, 30, 60 and 120 minutes exceeded the standard requirement.

An Experimental Study on the Period of Cold Joint Occurrence Effecting Shear Bond Performances of UHSCC (콜드조인트 발생시간이 초고강도 섬유보강 시멘트 복합체의 전단 접착 성능에 미치는 영향에 관한 실험적 연구)

  • Kim, Min-Seong;Yang, Hyun-Min;Lee, Han-Seung;Cho, Keun-hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.25-32
    • /
    • 2016
  • The purpose of this study is to evaluate the performance on the compressive bonding shear strength of ultra-high strength steel fiber reinforced cementitous composites(UHSCC). As a result of compressive bonding shear strength through Direct shear test, It was found that the specimen($150{\times}150{\times}150mm$) of NC(Normal concrete) + NC showed similar compressive bonding shear strength at whole experimental level. On the other hand, the specimen of UHSCC + UHSCC showed decrease of compressive bonding shear strength from after 30 minutes of the retarded placement than 0 minute. As a result of analyzing failure mode of bonding interface, It was found that the specimen of NC + NC showed mixed failure at whole experimental level. In case of the specimen of UHSCC + UHSCC, it showed interface failure from the specimen that are 30 minutes, 60 minutes and 90 minutes of delay of concrete placing. As a result of analyzing XRD test in terms of the placement interface on the specimen of NC and UHSCC, relatively much amount of $SiO_2$ was detected from the specimen of UHSCC than that of NC. It is judged that the most of main components of coating film shown in the specimen of UHSCC is $SiO_2$. In conclusion, it is judged that UHSCC which is made from after 30 minutes of delay of concrete placing is unable to be used as structural member because of deterioration of bonding performance. From later study, it is judged that the improvement of bonding performance from the part of cold joint occurrence is necessary through the interface preparation method.

Shear bond strength of dental CAD-CAM hybrid restorative materials repaired with composite resin (치과용 복합레진으로 수리된 CAD-CAM hybrid 수복물의 전단결합강도)

  • Moon, Yun-Hee;Lee, Jonghyuk;Lee, Myung-Gu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.3
    • /
    • pp.193-202
    • /
    • 2016
  • Purpose: This study was performed in order to assess the effect of the surface treatment methods and the use of bonding agent on the shear bond strength (SBS) between the aged CAD-CAM (computer aided design-computer aided manufacturing) hybrid materials and added composite resin. Materials and methods: LAVA Ultimate (LU) and VITA ENAMIC (VE) specimens were age treated by submerging in a $37^{\circ}C$ water bath filled with artificial saliva (Xerova solution) for 30 days. The surface was ground with #220 SiC paper then the specimens were divided into 9 groups according to the combination of the surface treatment (no treatment, grinding, air abrasion with aluminum oxide, HF acid) and bonding agents (no bonding, Adper Single Bond 2, Single Bond Universal). Each group had 10 specimens. Specimens were repaired (added) using composite resin (Filtek Z250), then all the specimens were stored for 7 days in room temperature distilled water. SBS was measured and the fractured surfaces were observed with a scanning electron microscope (SEM). One-way ANOVA and Scheffe test were used for statistical analysis (${\alpha}=.05$). Results: Mostly groups with bonding agent treatment showed higher SBS than groups without bonding agent. Among the groups without bonding agent the groups with aluminum oxide treatment showed higher SBS. However there was no significant difference between groups except two subgroups within LU group, which revealed a significant increase of SBS when Single Bond Universal was used on the ground LU specimen. Conclusion: The use of bonding agent when repairing an aged LAVA Ultimate restoration is recommended.

A Study on Shear Bond Strength of Core-veneer Interface for Bilayered all Ceramics (Bilayered all Ceramics에서 Core와 Veneer 계면의 전단결합강도에 관한 연구)

  • Jung, Yong-Su;Lee, Jin-Han;Lee, Jae-In;Dong, Jin-Keun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.3
    • /
    • pp.231-242
    • /
    • 2008
  • Purpose: The purpose of this study was to investigate the bond strength of the core-veneer interface in all ceramic systems. Material and Methods: The all ceramic systems tested with their respective veneer were IPS Empress 2 with IPS Eris, IPS e.max Press with IPS e.max Ceram and IPS-e.max ZirCAD with IPS e.max Ceram. Cores (N=36, N=12/group, diameter: 10mm, thickness: 3mm) were fabricated according to the manufacturer's instruction and cleaned with ultrasonic cleaner. The veneer(diameter: 3mm, thickness: 2mm) were condensed in stainless steel mold and fired on to the core materials. After firing, they were again ultrasonically cleaned and embedded in acrylic resin. The specimens were stored in distilled water at $37^{\circ}C$ for 1 week. The specimens were placed in a mounting jig and subjected to shear force in a universal testing machine(Z020, Zwick, Germany). Load was applied at close to the core-veneer interface as possible with crosshead speed of 1.00mm/min until failure. Average shear bond strengths(MPa) were analyzed with a one-way analysis of variance and the Tukey test(${\alpha}=.05$). The failed specimens were examinated by scanning electron microscopy(JSM-6360, JEOL, Japan). The pattern of failure was classified as cohesive in core, cohesive in veneer, mixed or adhesive. Results: The mean shear bond strength($MPa{\pm}SD$) were IPS e.max Press $32.85{\pm}6.75MPa$, IPS Empress 2 $29.30{\pm}6.51MPa$, IPS e.max ZirCAD $28.10{\pm}4.28MPa$. IPS Empress 2, IPS e.max Press, IPS e.max ZirCAD were not significantly different from each others. Scanning electron microscopy examination revealed that adhesive failure did not occur in any all ceramic systems. IPS Empress 2 and IPS e.max Press exhibited cohesive failure in both the core and the veneer. IPS e.max ZirCAD exhibited cohesive failure in veneer and mixed failure.

STUDY ON THE INTERFACE BETWEEN LIGHT-CURED GLASS IONOMER BASE AND INDIRECT COMPOSITE RESIN INLAY AND DENTIN (기저재용 광중합형 글래스아이오노머의 치질 및 복합 레진 인레이에 대한 접착양상)

  • Lee, Song-Hee;Kim, Dong-Jun;Hwang, Yun-Chan;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.3
    • /
    • pp.158-169
    • /
    • 2005
  • This study was done to evaluate the shear bond strength between light-cured glass ionomer cement (GIC) base and resin cement for luting indirect resin inlay and to observe bonding aspects which is produced at the interface between them by SEM. Two types of light cured GIC (Fuji II LC Improved, GC Co. Tokyo, Japan and Vitrebond$^{TM}$, 3M, Paul Minnesota U.S.A) were used in this study. For shear bond test, GIC specimens were made and immersed in 37$^{\circ}C$ distilled water for 1 hour, 24 hours, 1 week and 2 weeks. Eighty resin inlays were prepared with Artglass$^{(R)}$ (Heraeus Kultzer Germany) and luted with Variolink$^{(R)}$ II (Ivoclar Vivadent, Liechtenstein). Shear bond strength of each specimen was measured and fractured surface were examined. Statistical analysis was done with one-way ANOVA. Twenty four extracted human third molars were selected and Class II cavities were prepared and GIC based at axiopulpal lineangle. The specimens were immersed in 37$^{\circ}C$ distilled water for 1 hour, 24 hours, 1 week and 2 weeks. And then the resin inlays were luted to prepared teeth. The specimens were sectioned vertically with low speed saw. The bonding aspect of the specimens were observed by SEM (JSM-5400$^{(R)}$, Jeol, Tokyo, Japan) .There was no significant difference between the shear bond strength according to storage periods of light cured GIC base. And cohesive failure was mostly appeared in GIC On scanning electron micrograph, about 30 - 120 $\mu$m of the gaps were observed on the interface between GIC base and dentin. No gaps were observed on the interface between GTC and resin inlay.

The Effect of Variation of Assembly Time on Glue Bond Strength (집결시간(集結時間)이 합판접착강도(合板接着强度)에 미치는 영향(影響))

  • Shim, Chong-Supp
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.118-131
    • /
    • 1982
  • 1. In order to investigate the effect of variation of assembly time on glue bond strength, and to determine the optimum range of assembly time with given glue, this experiment was made at the suggestion of the Wood Technology Laboratory, School of Forestry, Yale University. 2. For this investigation, three-ply-plywoods with 1/22 inch, birch veneer, phenolic resin, and soybean glue were made at the following variation of assembly time, that is, 1, 5, 10, 25, 35, 50, and 70 minutes, under both open and closed assembly manners, and the shear strength test at dry and wet were adoptted. 3. The shear strength and wood failure of each plywood panel constructed at the given assembly time have been illustrated in Tables 1, 2, 3 and 4. It has shown that there is a remarkable tendency, for increasing assembly time to give lower shear strength and wood failure throughout almost all cases. The effective range of assembly time of tested glues in this investigation for both open and closed assembly are summarized in the Table 7. Thus, allowable assembly time for Phenolic resin may be up to 10 minutes under open assembly and up to 50 minutes under closed assembly. For soybean glue, the permissible assembly time may be up to 5 minutes under open assembly and up to 15 minutes under closed assembly. The allowable assembly time for open assembly with the same glue is reduced by approximately one third or more than one third as compared with closed assembly time. This might mean that the closed asembly time for these glues is more practical than the open assembly.

  • PDF

Adhesion of 10-MDP containing resin cements to dentin with and without the etch-and-rinse technique

  • Turp, Volkan;Sen, Deniz;Tuncelli, Betul;Ozcan, Mutlu
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.226-233
    • /
    • 2013
  • PURPOSE. This study evaluated the adhesion of 10-MDP containing self-etch and self-adhesive resin cements to dentin with and without the use of etch-and-rinse technique. MATERIALS AND METHODS. Human third molars (N=180) were randomly divided into 6 groups (n=30 per group). Conventional (Panavia F2.0, Kuraray-PAN) and self-adhesive resin cements (Clearfil SA, Kuraray-CSA) were bonded to dentin surfaces either after application of 3-step etch-and-rinse (35% $H_3PO_4$ + ED Primer) or two-step self-etch adhesive resin (Clearfil SE Bond). Specimens were subjected to shear bond strength test using the universal testing machine (0.5 mm/min). The failure types were analyzed using a stereomicroscope and quality of hybrid layer was observed under a scanning electron microscope. The data (MPa) were analyzed using two-way ANOVA and Tukey's tests (${\alpha}$=.05). RESULTS. Overall, PAN adhesive cement showed significantly higher mean bond strength ($12.5{\pm}2.3-14.1{\pm}2.4$ MPa) than CSA cement ($9.3{\pm}1.4-13.9{\pm}1.9$ MPa) (P<.001). Adhesive failures were more frequent in CSA cement groups when used in conjunction with two-step self-adhesive (68%) or no adhesive at all (66%). Hybrid layer quality was inferior in CSA compared to PAN cement in all conditions. CONCLUSION. In clinical situations where bonding to dentin substrate is crucial, both conventional and self-adhesive resin cements based on 10-MDP can benefit from etch-and-rinse technique to achieve better quality of adhesion in the early clinical period.