• Title/Summary/Keyword: Shear span-to-depth ratio

Search Result 228, Processing Time 0.021 seconds

Effect of Span-to-Depth Ratio on Behavior and Capacity in Composite Structure of Sandwich System (샌드위치식 복합구조체의 셀(Cell)형상비가 거동과 성능에 미치는 영향)

  • 정연주;정광회;김병석;박성수;황일선
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.73-78
    • /
    • 2000
  • This paper describes the effect of span-to-depth ratio, which describes aspect of cell formed with top diaphragm steel plate, on capacity in composite steel-concrete structure of sandwich system. The span-to-depth ratio \ulcorner load-carrying mechanism and load-distribution capacity of structure. Therefore, stress levels of members and load-resis\ulcorner of system vary according to span-depth ratio. In this study, numerical nonlinear analysis was performed to various ratio for two types(MA, MB) composite structure of sandwich system to analyze the influence of span-to-depth ratio or, behavior. The difference of load-carrying mechanism and stress of members results from analysis results, then bas\ulcorner differences, the effects of span-to-depth ratio on shear capacity, flexural capacity and load-resistance capacity were analyze effects on failure mode and ductility were briefly. As a results of this study, as span-to-depth ratio increases, \ulcorner bottom steel plate and concrete lower. This implies an increase in effective flexural and shear capacity. Therefore lo\ulcorner capacity of structure improves as span-to-depth ratio increases, Especially, the effect is greate in shear than flexural span-to-depth ratio increases, this difference between flexural and shear capacity may change failure mode and ductility. span-to-depth ratio increases capacity increases more than flexural capacity, we should expect that structural behavior mode gradually change from shear to flexural and ductility of structure gradually improves.

  • PDF

An Experimental Study to Predict Minimum Shear Reinforcement Ratio of RC Beams with Various Shear Span-to-Depth Ratios (전단경간비가 다른 철근콘크리트 보의 최소전단철근비 예측에 관한 실험적 연구)

  • 김욱연;김상우;이정윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.890-895
    • /
    • 2003
  • The purpose of this experimental study is to investigate the influence of shear span-to-depth ratio on the minimum shear reinforcement ratio of reinforced concrete beams. In this study, 7 reinforced concrete beam specimens were tested. The parameters of experiment are shear span-to-depth ratio(a/d=2.0, 3.0, 4.0) and shear reinforcement ratio($p_v$=0%, 0.183%, and 0.233%). The section of all secimens was 350mm width and 450mm depth. The observed results were compared with the calculated results by the current ACI 318-02 Building Code and the proposed equation. The safety rate of the specimens, L5S2A, L5S3A, L5S4A, and L5S4P specimens were 1.80, 1.25, 1.38, and 1.56 respectively. The test results indicated that the shear behavior of reinforced concrete beams with the minimum shear reinforcement was influenced by the shear span-to-depth ratio.

  • PDF

A Study on the Shear Strength Properties of Reinforced Concrete Beams according to Shear Span-Depth Ratio (전단지간비에 따른 철근콘크리트 보의 전단강도특성에 관한 연구)

  • Park, Jong-Gun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.93-100
    • /
    • 2000
  • The purpose of this study is to investigate the shear behavior of reinforced concrete beams according to small shear span-depth ratio between a/d=1.5, 2.8, 3.6. In general, shear strength of reinforced concrete beams is dependent on the compressive strength of concrete the longitudinal steel ratio, the shear span-depth ratio and shear reinforcement. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns, fracture modes. The load versus strain and load versus deflection relations were obtained from the static test. The test results on shear strength were compared with results obtained by the formulas of ACI code 318-95. The shear strength of reinforced concrete beams exceeded those predicted following present ACI code 318-95(11-6).

  • PDF

An Experimental Study on the Shear Behavior of High Strength Concrete Deep Beam (고강도 철근 콘크리트 깊은 보의 전단거동에 관한 실험적 연구)

  • 함영삼;양근혁;이영호;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.897-902
    • /
    • 2001
  • The purpose of this experimental study is to investigate the shear behavior of high-strength concrete deep beam and to grasp the conservatism of ACI Building Code. Experimental results on 12 deep beams under two equal symmetrically placed point loads are reported. Main variables are vertical and horizontal web reinforcement and shear span-to-overall depth ratio. Test results indicated that web reinforcement dose not affect on formation of inclined cracks but shear span-to-overall depth ratio affect on inclined shear cracks and ultimate shear strength. Addition of vertical web reinforcement improves ultimate shear strength of H.S.C. deep beams that shear span-to-overall depth ratio is 1.0. Considerable increase in ultimate shear strength of H.S.C. deep beams with increasing horizontal web reinforcement that shear span-to-overall depth ratio is 0.5. Especially with increasing concrete strength($f_{ck}$) the ACI code is conservative in estamating the ultimate shear strength of deep beams.

  • PDF

Effects of Shear Span-to-depth Ratio and Tensile Longitudinal Reinforcement Ratio on Minimum Shear Reinforcement Ratio of RC Beams (전단경간비와 주인장철근비가 철근콘크리트 보의 최소전단철근비에 미치는 영향)

  • Lee Jung-Yoon;Kim Wook-Yeon;Kim Sang-Woo;Lee Bum-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.795-803
    • /
    • 2004
  • To prevent the shear failure that occurs abruptly with no sufficient warning, the minimum amount of shear reinforcement should be provided to reinforced concrete(RC) beams. The minimum amount of shear reinforcement of RC beams is influenced by not only compressive strength of concrete but also shear span-to-depth ratio and ratio of tensile longitudinal reinforcement. In this paper, 14 RC beams were tested in order to observe the influences of shear span-to-depth ratio, ratio of tensile longitudinal reinforcement, and compressive strength of concrete. The test results indicated that the rate of shear strength to the diagonal cracking strength of RC beams with the same amount of shear reinforcement increased as the ratio of tensile longitudinal reinforcement increased, while it decreased as the shear span-to-depth ratio increased. The observed test results were compared with the calculated results by the current ACI 318-02 Building Code and the proposed equation.

Design for shear strength of concrete beams longitudinally reinforced with GFRP bars

  • Thomas, Job;Ramadassa, S.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.41-55
    • /
    • 2015
  • In this paper, a model for the evaluation of shear strength of fibre reinforced polymer (FRP)-reinforced concrete beams is given. The survey of literature indicates that the FRP reinforced beams tested with shear span to depth ratio less than or equal to 1.0 is limited. In this study, eight concrete beams reinforced with GFRP rebars without stirrups are cast and tested over shear span to depth ratio of 0.5 and 1.75. The concrete compressive strength is varied from 40.6 to 65.3 MPa. The longitudinal reinforcement ratio is varied from 1.16 to 1.75. The experimental shear strength and load-deflection response of the beams are determined and reported in this paper. A model is proposed for the prediction of shear strength of beams reinforced with FRP bars. The proposed model accounts for compressive strength of concrete, modulus of FRP rebar, longitudinal reinforcement ratio, shear span to depth ratio and size effect of beams. The shear strength of FRP reinforced concrete beams predicted using the proposed model is found to be in better agreement with the corresponding test data when compared with the shear strength predicted using the eleven models published in the literature. Design example of FRP reinforced concrete beam is also given in the appendix.

Concrete Shear Strength of FRP Reinforced Concrete Beam (FRP 보강근을 사용한 콘크리트 보의 콘크리트 전단강도)

  • Cho, Jae Min;Jang, Hee Suk;Kim, Myung Sik;Kim, Chung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3A
    • /
    • pp.259-266
    • /
    • 2009
  • This study is to develop equations that consider the elastic modulus ratio of FRP bar and steel reinforcement, shear span to depth ratio, and flexural reinforcement ratio of FRP bar, to determine concrete shear strength of FRP reinforced concrete beams without shear reinforcement. As experimental parameters, 2 types of FRP bar, 3 types of shear span to depth ratio, and 3 types of flexural reinforcement were used. Experimental results for two of shear span to depth ratio were quoted from previous study to evaluate effect of shear span to depth ratio in more detail. Shear strength correction factors needed for evaluating concrete shear strength were proposed from regression analysis using above experimental results. Equations suggested from this study and other codes were examined and compared with 31 experimental results available in the literature. From this comparison, it could be known that the equation suggested from this study gives the most approaching result to experimental results.

Shear Capacity of Reinforced Concrete Haunched Beams by Shear Span-to-Depth Ratio and Haunch Slope (경간비와 헌치 기울기 변화에 따른 철근콘크리트 헌치보의 전단성능에 관한 연구)

  • Song, Ho-San
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.119-129
    • /
    • 2002
  • Reinforced concrete haunched beams have been used for enhancement of shear resistance of beams to avoid the stress concentration. But American and British codes do not give my formula for the design of haunched beams. The purpose of this research is to experimentally investigate the shear failure of reinforced concrete punched beams for various haunch inclinations and shear span-to-depth ratios. The experimental results showed that even though shear behavior of haunched beam were similar to that of resembled rectangular beams, shear span-to-depth ratios and inclinations of haunch had effects on shear cracking strength.

Effects of Span-to-depth Ratio and Poisson's Ratio on Elastic Constants from Bending and Plate Tests

  • Jeong, Gi Young;Kong, Jin Hyuk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • The goal of this study is to evaluate the limitation of ASTM D 198 bending and ASTM D 3044 in determination of elastic modulus and shear modulus. Different material properties and span to depth ratios were used to analyze the effects of material property and testing conditions. The ratio of true elastic modulus to apparent elastic modulus evaluated from ASTM D 198 bending sharply decreased with increment of span to depth ratio. Shear modulus evaluated from ASTM D 198 bending decreased with increment of depth, whereas shear modulus evaluated from ASTM D 3044 was hardly influenced by increment of depth. Poisson's ratio influenced shear modulus from ASTM D 198 bending but did not influence shear modulus from ASTM D 3044. Different shearing factor was obtained for different depths of beams to correct shear modulus obtained from ASTM D 198 bending equivalent to shear modulus from theory of elasticity. Equivalent shear modulus of materials could be obtained by applying different shearing factors associated with beam depth for ASTM D 198 bending and correction factor for ASTM D 3044.

Behavior of reinforced concrete corbels

  • Lu, Wen-Yao;Lin, Ing-Jaung
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.357-371
    • /
    • 2009
  • Test results of thirteen reinforced concrete corbels with shear span-to-depth ratio greater than unity are reported. The main variables studied were compressive strength of concrete, shear span-to-depth ratio and parameter of vertical stirrups. The test results indicate that the shear strengths of corbels increase with an increase in compressive strength of concrete and parameter of vertical stirrups. The shear strengths of corbels also increase with a decrease in shear span-to-depth ratio. The smaller the shear span-to-depth ratio of corbel, the larger the stiffness and the shear strength of corbel are. The higher the concrete strength of corbel, the higher the stiffness and the shear strength of corbel are. The larger the parameter of vertical stirrups, the larger the stiffness and the shear strength of corbel are. The softened strut-and-tie model for determining the shear strengths of reinforced concrete corbels is modified appropriately in this paper. The shear strengths predicted by the proposed model and the approach of ACI Code are compared with available test results. The comparison shows that the proposed model can predict more accurately the shear strengths of reinforced concrete corbels than the approach of ACI Code.