• Title/Summary/Keyword: Shape of displacement

Search Result 1,048, Processing Time 0.023 seconds

The Convergence Design for Stiffness and Structure Advancement of Automotive Body (승용차 차체의 강도 구조 개선을 위한 융합설계)

  • Lee, Jeong-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.4
    • /
    • pp.189-197
    • /
    • 2017
  • In the design of an automotive structural component, one of the more important tasks for a design engineer is to determine the life of the component and to ensure that the component will not fail prematurely. In order to accomplish this, a design engineer will first use simple section analysis to come up with a section shape in the concept design stage and use more advanced analysis for stress level. At this stage, the analysis should focus on understanding overall behavior in terms of load paths and gross stress levels. A model that is adequate for a stiffness analysis of the structure will usually provide an adequate level of stress information in the design process. To perform a detailed stress analysis, the structure models must have the detailed local areas such as stress concentrations or force(or displacement) distributions. This paper is to present the design considerations for the stress analysis of automotive structure.

LACBED Observation of Strain Fields due to Precipitates, Especially S-Phase Particles in Al-Cu-Mg Alloy (Al-Cu-Mg 합금의 석출입자, 특히 S-상 입자들에 의한 변형장의 LACBED 관찰)

  • Kim, Hwang-Su
    • Applied Microscopy
    • /
    • v.37 no.2
    • /
    • pp.123-133
    • /
    • 2007
  • The strain fields due to precipitates, especially S-phase $(Al_2CuMg)$ particles in Al-2.5Cu-1.5Mg wt.% alloy were first investigated with Large Angle Convergent Beam Electron Diffraction (LACBED) method. The work involves LACBED pattern simulations to estimate possibly the strength of the strain fields. To do this the morphology of S-particle was optimized as a cylindrical shape with $a_s$ axis, and the displacement vector of strain fields was assumed to be perpendicular to $a_s$ axis. With this simple model the reasonable fittings between the observed patterns of the strain fields and simulations were obtained. And in the early aging stage of the alloy the significant strain fields were not observed. As a result of this study it is expected that the strain fields due to S-phase precipitates in the stage with maximum hardness would make a complex networks to possibly contribute to hardiness of the alloy.

Evaluation of Flexural Behavior of Masonry Members Reinforced with Engineered Cementitious Composite (고인성 복합체로 보강한 조적부재의 휨 거동 평가)

  • Yang, Seung-Hyeon;Kim, Sun-Woong;Kim, Jae-Hwan;Kang, Suk-Pyo;Hong, Seong-Uk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.37-45
    • /
    • 2021
  • This paper is a basic study to evaluate the possibility of earthquake-resistant reinforcement by reinforcing engineered cementitious composite in masonry members. In order to examine the performance according to the fiber mixing rate of the engineered cementitious composite, a test specimen was prepared according to the formulation design, and flow ability, compressive strength, flexural strength, length change rate, and direct tensile strain were measured. In addition, non-reinforced masonry members, masonry members reinforced with engineered cementitious composite, and masonry members in which glass fibers and wire mesh were separately reinforced with engineered cementitious composites were manufactured, and flexural strength and maximum displacement were measured. All specimens reinforced with engineered cementitious composite showed more than 16 times the effect of maximal strength compared to that of no reinforcement, and as a result of examining the crack shape, the energy dissipation ability was excellent, confirming the possibility of seismic reinforcement.

Lateral-Torsional Buckling Analysis of the Circular Arches Using Unsymmetric Thin-Walled Beam Elements (비대칭(非對稱) 박벽(薄壁)보 요소(要素)를 이용(利用)한 원형(圓形) 아치의 횡좌굴(橫挫屈) 해석(解析))

  • Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.39-52
    • /
    • 1993
  • For the lateral-torsional buckling analysis of the thin-walled space frame and circular arch with the unsymmetric cross section, the tangent stiffness matrices are derived by introducing Vlasov's assumption for the thin-walled beam and using the principle of virtual displacement. In the cases of the unrestrained torsion and the restrained torsion, the elastic and geometric stiffness matrices corresponding to semitangential rotation and semitangential moment are evaluated by using the Hermitian polynomials as the shape function. In order to illustrate the accuracy and convergence characteristics of the derived formulations, numerical examples for the lateral-torsional buckling analysis of the hinged circular arch under pure bending and uniform compression are presented and compared with the analytic solutions of references.

  • PDF

Free and Ambient Vibration of Steel-Deck Truss Bridge (강합성 데크 트러스 보도교의 자유진동해석 및 상시진동실험에 관한 연구)

  • Jung, Sung Yeop;Oh, Soon Taek
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.60-68
    • /
    • 2012
  • This study describes an analytical and experimental investigation of the pedestrian steel-deck truss bridge in the City of Rochester, New York, U.S.A. This investigation was undertaken to provide assurance that this important bridge continues to be functional for this use. An ambient vibration experiment on full-scale structures is a way of assessing the reliability of the various assumptions employed in the mathematical models used in analysis. It is also the most reliable way of determining the structural parameters of major importance in structural dynamics, such as the mode shapes and the associated natural frequencies. Pedestrian-induced vibrations have been measured on the bridge to determine the displacement and the vertical and transverse dynamic characteristics of the steel deck truss. In the analytical modeling, three-dimensional finite element analysis was developed and validated against the ambient tests.

Stability and Post-Buckling Analyses of Thin-Walled Space Frames Using Finite Element Method (박벽 공간뼈대구조의 안정성 및 후좌굴 유한요소해석)

  • 김문영;안성원
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.205-216
    • /
    • 1997
  • In order to trace the lateral post-buckling behaviors of thin-wafled space frames, a geometrically nonlinear finite element formulation is presented by applying incremental equilibrium equations based on the updated Lagrangian formulation and introducing Vlasov's assumption. The improved displacement field for symmetric thin-walled cross sections is introduced based on inclusion of second order terms of finite rotations, and the potential energy corresponding to the semitangential rotations and moments is consistently derived. For finite element analysis, tangent stiffness matrices of the thinwalled space frame element with 7 degrees of freedom including the restrained warping for each node are derived by using the Hermition polynomials as shape functions. A co-rotational formulation in order to evaluate the unbalanced loads is presented by separating the rigid body rotations and pure deformations from incremental displacements and evaluating the updated direction cosines of the frame element due to rigid body rotations and incremental member forces from pure deformations. Finite element solutions for the spatial buckling and post-buckling analysis of thin-walled space frames are presented and compared with available solutions and other researcher's results.

  • PDF

Analytical Study on Dynamic Characteristics of Hydraulic Cylinder Applied to the Vehicle Holding Device for Launch Vehicle (발사체용 지상고정장치 구동유압실린더의 운동특성에 관한 해석적 연구)

  • Lee, Jaejun;Park, Sangmin;Yang, Seongpil;Kim, Daerae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.44-50
    • /
    • 2017
  • Vehicle Holding Device(VHD) has a role that holding the launch vehicle on its launch pad until the engine therust reaches a steady condition. The analytical study of shape parameters and dynamic characteristics of hydraulic cylinders is carried out. The contraction of cylinder is considered as the major factor of releasing mechanism. Through the analysis, the decreasing of cylinder slit size and increasing initial charging pressure increase the contraction force. Through the transient analysis, cylinder load, displacement and inner pressure distribution are confirmed. The cylinder contraction force is converged to the cylinder external force when the cylinder starts to move. Also, the pressure distribution in the hydraulic cylinder is constant.

Efficient Analysis for a Three-Dimensional Multistory Structure with Wings (여러 Wing들로 구성된 3차원 구조물의 효율적인 해석모델)

  • Moon, Seong Kwon;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.429-438
    • /
    • 1994
  • Three-dimensional analyses of multistory structures with wings using finite element models require tedious input data preparation, longer computation time. and larger computer memory. So this study lays emphasis on the development of efficient analysis models for a three-dimensional multistory structure with wings, including in-plane deformation of floor slabs. Since a three-dimensional multistory structure with wings is regarded as a combination of wing structures and their junction in this study, the proposed analysis models are easily applicable to multistory structures with plans in the shape of letters Y, U, H, etc. Dynamic analyses results obtained using proposed models are in excellent agreement to those acquired using three-dimensional finite element models in terms of natural vibration periods, mode shapes and displacement time history.

  • PDF

Lateral-Torsional Post-Buckling Analyses of Thin-Walled Space Frames with Non-symmetric Sections (비대칭단면을 갖는 박벽 공간뼈대구조의 횡-비틂 후좌굴 유한요소해석)

  • Park, Hyo Gi;Kim, Sung Bo;Kim, Moon Young;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.153-165
    • /
    • 1999
  • In order to trace the lateral-torsional post-bucking behaviors of thin-walled space frames with non-symmetric cross sections, a geometrically non-linear finite element formulation is presented by applying incremental equilibrium equations based on the updated Lagrangian formulation and introducing Vlasov's assumption. The improved displacement field for non-symmetric thin-walled cross sections is introduced based on inclusion of second order terms of finite rotations, and the potential energy corresponding to the semitangential rotations and moments is consistently derived. For finite element analysis, tangent stiffness matrices of thin-walled space frame element are derived by using the Hermition polynomials as shape functions. A co-rotational formulation in order to evaluate the unbalanced loads is presented by separating the rigid body rotations and pure deformations from incremental displacements and evaluating the updated direction cosines and incremental member forces.

  • PDF

A Comparative Study on Formulation of Three-Dimensional Elastic-Plastic Finite Deformation Analysis for Prediction Large Deflection (강부재의 대변형 예측을 위한 3차원 탄소성 유한변위해석의 정식화에 대한 비교연구)

  • Jang, Gab-Chul;Chang, Kyong-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.53-61
    • /
    • 2006
  • In th is paper, to predicting the large deformation and cyclic plastic behavior of steel members under loading, 3-Dimensional elastic-plastic FE analysis method is developed by using finite deformation theory and proposed cyclic plasticity model. finite deformation theory, described the large deformation, is formulated by using Updated-lagrangian formulation and Green's strain tensor, Jaumann's derivative of Kirchoff stress. Also, cyclic plasticity model proposed by author is applied to developed analysis method. To verification of developed analysis method, analysis result of steel plate specimen compare to the analysis result using infinitesimal deformation theory and test result. Also, load-displacement and deflection shape, analysis result of pipe-section steel column, compare to test result. The good agreement between analysis result and experiment result shown that developed 3-dimensional finite element analysis can be predict the large deformation and cyclic plastic behavior of steel members.

  • PDF