• Title/Summary/Keyword: Shape analysis

검색결과 10,578건 처리시간 0.052초

정식화를 이용한 3차원 구조물의 형상 최적설계 (Variational Formulation for Shape Optimization of Spatial Beam Structures)

  • 최주호;김종수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.123-130
    • /
    • 2002
  • A general formulation for shape design sensitivity analysis over three dimensional beam structure is developed based on a variational formulation of the beam in linear elasticity. Sensitivity formula is derived based on variational equations in cartesian coordinates using the material derivative concept and adjoint variable method for the displacement and Von-Mises stress functionals. Shape variation is considered for the beam shape in general 3-dimensional direction as well as for the orientation angle of the beam cross section. In the sensitivity expression, the end points evaluation at each beam segment is added to the integral formula, which are summed over the entire structure. The sensitivity formula can be evaluated with generality and ease even by employing piecewise linear design velocity field despite the bending model is fourth order differential equation. For the numerical implementation, commercial software ANSYS is used as analysis tool for the primal and adjoint analysis. Once the design variable set is defined using ANSYS language, shape and orientation variation vector at each node is generated by making finite difference to the shape with respect to each design parameter, and is used for the computation of sensitivity formula. Several numerical examples are taken to show the advantage of the method, in which the accuracy of the sensitivity is evaluated. The results are found excellent even by employing a simple linear function for the design velocity evaluation. Shape optimization is carried out for the geometric design of an archgrid and tilted bridge, which is to minimize maximum stress over the structure while maintaining constant weight. In conclusion, the proposed formulation is a useful and easy tool in finding optimum shape in a variety of the spatial frame structures.

  • PDF

Various Men's Body Shapes and Drops for Developing Menswear Sizing Systems in the United States

  • HwangShin, Su-Jeong;Istook, Cynthia L.;Lee, Jin-Hee
    • 한국의류학회지
    • /
    • 제35권12호
    • /
    • pp.1454-1465
    • /
    • 2011
  • Menswear body types are often labeled on garments (to indicate how the garments are designed to fit) with indicators of a size category such as regular, portly, and stout, athletic, or big and tall. A drop (relationships between the chest and waist girths) is related to the fit of a tailored suit. However, current standards are not designed for various drops or body types. There is not enough information of categorizing men's body shapes for the apparel sizing systems. In this article, a set of men's data from SizeUSA sizing survey was analyzed to investigate men's body shapes and drops. Factor analysis and a cluster analysis method were used to categorize men's body shapes. In the results, twenty-five variables were selected through the factor analysis and found four factors: girth factor, height factor, torso girth factor, and slope degree factor. According to the factor and cluster analysis, various body shapes were found: Slim Shape (SS - tall ectomorphy), Heavy Shape (HS - athletic, big & tall, endomorphy and mesomorphy), Slant Inverted Triangle Shape (SITS - regular, slight ectomorphy and slight mesomorphy weight range from normal to slightly overweight), Short Round Top Shape (SRTS - portly and stout, endomorphy). Body shapes were related to fitting categories. SS and HS were related to big & tall fitting category. SITS was related to regular. SRTS was related to portly and stout. Shape 1 (31%) and Shape 2 (26%) were related to current big & tall category. Shape 3 (34%) were related to regular. Shape 4 (9%) were in portly and stout category. ASTM D 6240 standard was the only available standard that presented a regular fitting category. Various drops were found within a same chest size group; however, this study revealed great variances of drops by body shape.

슬랙스 패턴개발을 위한 20대 여성의 하반신 주요 부위별 치수 및 체형 변화 분석 (Analysis of the Changes in Lower Body Measurements and Shapes of Women in Their 20s for Slacks Pattern Development)

  • 김지민;엄소희;이영숙;김용문;우현리
    • 패션비즈니스
    • /
    • 제26권1호
    • /
    • pp.30-40
    • /
    • 2022
  • This study aims to provide basic information on the changes in lower body measurements and shapes of women in their 20s for developing better fitting slacks patterns and a more applicable sizing system that can be widely utilized for women of all ages. Factor and cluster analysis were performed on 1,360 women's direct measurement data within the age group from the 5th (2004) and 7th (2015) Korean Human Body Measurement Investigation. The factor analysis identified four factors and explained 82.54% of the total variance; Factor 1, horizontal measurements of lower body; Factor 2, vertical lengths of lower body; Factor 3, measurements of leg and hip areas; Factor 4, lengths of hip and crotch areas. The cluster analysis categorized the lower body shapes of each age group into four shapes; Shape 1, a petite lower body with short legs; Shape 2, a long lower body with medium built; Shape 3, an obese abdomen and legs; Shape 4, a short and slim lower body. Shape 4 (36.5%), Shape 2 (31.2%), Shape 1 (27.8%), and Shape 3 (4.5%) were placed in the order of frequency from the highest to lowest among all the age groups. The findings of this study showed gradual changes in the lower body measurements and shapes of women in their 20s and relevant physical features of each age group. They can be utilized for developing women's slacks patterns with better fitting and more comfort.

Vibration and mode shape analysis of sandwich panel with MWCNTs FG-reinforcement core

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제25권3호
    • /
    • pp.347-360
    • /
    • 2017
  • The goal of this study is to fill this apparent gap in the area about vibration analysis of multiwalled carbon nanotubes (MWCNTs) curved panels by providing 3-D vibration analysis results for functionally graded multiwalled carbon nanotubes (FG-MWCNTs) sandwich structure with power-law distribution of nanotube. The effective material properties of the FG-MWCNT structures are estimated using a modified Halpin-Tsai equation. Modified Halpin-Tsai equation was used to evaluate the Young's modulus of MWCNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the MWCNTs wt% range considered. Also, the mass density and Poisson's ratio of the MWCNT/phenolic composite are considered based on the rule of mixtures. Parametric studies are carried out to highlight the influence of MWCNT volume fraction in the thickness, different types of CNT distribution, boundary conditions and geometrical parameters on vibrational behavior of FG-MWCNT thick curved panels. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary conditions including Free, Simply supported and Clamped at the curved edges. For an overall comprehension on 3-D vibration analysis of sandwich panel, some mode shape contour plots are reported in this research work.

Shape control of cable structures considering concurrent/sequence control

  • Shon, Sudeok;Kwan, Alan S.;Lee, Seungjae
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.919-935
    • /
    • 2014
  • In this study, the control of the shape of pre-stressed cable structures and the effective control element were examined. The process of deriving the displacement control equations using the force method was explained, and the concurrent control scheme (CCS) and the sequence control scheme (SCS) were proposed. To explain the control scheme process, the quadrilateral cable net model was adopted and classified into a regular model and an irregular model for the analysis of the control results. In the control analysis of the regular model, the CCS and SCS analysis results proved reliable. For the SCS, the errors occur in the control stage and varied according to the control sequence. In the control analysis of the irregular model, the CCS analysis result also proved relatively reliable, and the SCS analysis result with the correction of errors in each stage was found nearly consistent with the target shape after the control. Finally, to investigate an effective control element, the Geiger cable dome was adopted. A set of non-redundant elements was evaluated in the reduced row echelon form of a coefficient matrix of control equations. Important elements for shape control were also evaluated using overlapping elements in the element sets, which were selected based on cable adjustments.

강제변위법을 이용한 굴착배면지반의 변형해석(II) - 수치해석 및 적용성 - (Deformation Analysis of Excavated Behind Ground by The Artificial Displacement Method (II) - Numerical Analysis and Application -)

  • 윤중만
    • 한국지반신소재학회논문집
    • /
    • 제7권3호
    • /
    • pp.31-40
    • /
    • 2008
  • 탄소성구성방정식을 적용한 유한요소법을 이용하여 흙막이벽의 변형형상에 따른 배면지반의 변형거동을 예측하였다. 굴착배면 지반의 변형형상은 흙막이벽 부근에서는 흙막이벽 변형형상과 유사하게 나타나지만 흙막이벽으로부터 멀어질수록 켄틸레버 형상으로 변한다. 그리고 흙막이벽의 상부변형을 억제시키면 배면지반의 변형(침하량, 측방이동량)을 감소시킬 수 있다. 또한, 굴착에 따른 흙막이벽의 변형형상은 굴착배면지반의 소성파괴영역 및 안전율 저하영역에 영향을 미치는 것으로 나타났다.

  • PDF

단조 해석을 통한 비대칭 날개면 용접 너트의 최적 공정 설계 (Development of an Unparalleled Shape Weld Nut Optimized by Forging Analysis Tool)

  • 박종혁;서재윤;설주연;황우성;이광희;김진용
    • 소성∙가공
    • /
    • 제27권2호
    • /
    • pp.81-86
    • /
    • 2018
  • In the cold forming process, it is not easy to fabricate a asymmetric type nut, due to the difficulty in the exact prediction of metal-flow. As we have identified, in that case, it often results in the various forging defects such as burrs, and an incomplete shape, as well as other problems because of this issue. In the current study, we introduce the development of an unparalleled shape Weld Nut by using a forging analysis tool (AFDEX). For the multi-forming machine, the optimized shapes of each intermediate product (step product) could be found by the use of a model for the prediction and analysis of various types, sizes and heights. Chiefly, forging tools were prepared based on the simulation results and an unparalleled shape could be prepared at one time without any burrs, incomplete shape and size.

정탄성학 문제에서 경계 기반 형상설계 민감도 해석 (Boundary-Based Shape Design Sensitivity Analysis of Elastostatics Problems)

  • 원준호;최주호
    • 대한기계학회논문집A
    • /
    • 제30권2호
    • /
    • pp.149-156
    • /
    • 2006
  • A boundary-based design sensitivity analysis(DSA) technique is proposed for addressing shape optimization issues in the elastostatics problems. Sensitivity formula is derived based on the continuum formulation in a boundary integral form, which consists of the boundary solutions and shape variation vectors. Though the boundary element method(BEM) has been mainly used to obtain the boundary solution, the FEM is used in this paper because this is much more popular, and has greatly improved meshing and computing power recently. The advantage of the boundary DSA is that the shape variation vectors, which are also known as design velocity fields, are needed only on the boundary. Then, the step for determining the design velocity field over the whole domain, which was necessary in the domain-based DSA, is eliminated, making the process easy to implement and efficient. Problem of fillet design is chosen to illustrate the efficiency of the proposed method. Accuracy of the sensitivity is good with this method even by employing the free mesh for the FE analysis.

시멘트 비접착 인공 고관절의 주대 형상 최적 설계 (Optimal Design of Stem Shape for Artificial Hip Prosthesis with Unbonded Cement Mantle)

  • 최돈옥;윤용산
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.932-938
    • /
    • 2001
  • This study is concerned with the shape optimization of stem for the artificial hip prosthesis with unbonded cement mantle. The artificial hip prosthesis with unbonded cement mantle allows a stem to slip on cement mantle because of polished stem surface. Unbonded cement mantle type has several advantages compared with bonded cement mantle type, for example, small micro motion, preventing stress shielding and so on. In this study, 2-dimensional axisymmetric model was developed with considering characteristics of unbonded cement mantle. Moreover, optimal shape of stem was obtained by using feasible direction method. The objective of this optimization is maximizing supported vertical loading. The slip motion and stresses of stem, cement mantle and bone is used for constraints. The optimal shape which obtained by this study has slope of 0.15 in proximal part and maintains the width about 5mm in distal part In addition, simplified 3-dimensional analysis which applying optimal shape is carried out. The result of 3-dimensional analysis showed that optimal shape has some advantages for cement mantle stress. However, more realistic 3-dimensional analysis which including bending effect, complex geometries etc. is needed in further research.

  • PDF

유한요소해석 기반의 전동 킥보드 연결부 형상에 따른 구조적 안전성 분석 (Structural Safety Analysis of Electric Kickboard According to Shape of Connection Parts Using Finite Element Analysis)

  • 김민규;김정진
    • 한국기계가공학회지
    • /
    • 제20권12호
    • /
    • pp.65-70
    • /
    • 2021
  • Electric kickboards are inviting attention as next-generation transportation systems with their number of users increasing rapidly every year. However, the number of related accidents similarly increases with the increase in the number of users. The purpose of this study is to analyze the structural safety of electric kickboards according to the shape of the connection parts. For this purpose, four different shapes of the connection parts, i.e., cube, cylinder, toroid, and divided cube were selected. Subsequently, the safety was analyzed based on the finite element (FE) analysis under the front collision scenario. The results showed that the shape of the divided cube induced the lowest von Mises stress and the highest safety factor amongst the four models. Moreover, only the shape showed a safety factor higher than 1. However, the shape of the cylinder exhibited the lowest structural vulnerability. These results demonstrate the importance of the shape of the connection part in maintaining the overall safety of an electric kickboard.