Browse > Article
http://dx.doi.org/10.12989/scs.2017.25.3.347

Vibration and mode shape analysis of sandwich panel with MWCNTs FG-reinforcement core  

Tahouneh, Vahid (Young Researchers and Elite Club, Islamshahr Branch, Islamic Azad University)
Publication Information
Steel and Composite Structures / v.25, no.3, 2017 , pp. 347-360 More about this Journal
Abstract
The goal of this study is to fill this apparent gap in the area about vibration analysis of multiwalled carbon nanotubes (MWCNTs) curved panels by providing 3-D vibration analysis results for functionally graded multiwalled carbon nanotubes (FG-MWCNTs) sandwich structure with power-law distribution of nanotube. The effective material properties of the FG-MWCNT structures are estimated using a modified Halpin-Tsai equation. Modified Halpin-Tsai equation was used to evaluate the Young's modulus of MWCNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the MWCNTs wt% range considered. Also, the mass density and Poisson's ratio of the MWCNT/phenolic composite are considered based on the rule of mixtures. Parametric studies are carried out to highlight the influence of MWCNT volume fraction in the thickness, different types of CNT distribution, boundary conditions and geometrical parameters on vibrational behavior of FG-MWCNT thick curved panels. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary conditions including Free, Simply supported and Clamped at the curved edges. For an overall comprehension on 3-D vibration analysis of sandwich panel, some mode shape contour plots are reported in this research work.
Keywords
FG-MWCNT structures; vibration; thick laminated structures; three-dimensional theory of elasticity; Halpin-Tsai equation; mode shape analysis;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Yang, R., Kameda, H. and Takada, S. (1998), "Shell model FEM analysis of buried pipelines under seismic loading", Bull Disaster Prev Res. Inst., 38, 115-146.
2 Chen, C.S., Liu, F.H. and Chen, W.R. (2017), "vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments", Steel Compos. Struct., 23(3), 251-261.   DOI
3 Chen, W.Q., Bian, Z.G. and Ding, H.U., (2004), "Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells", Int. J. Mech. Sci., 46(1), 159-171.   DOI
4 Civalek, O. (2005), "Geometrically nonlinear dynamic analysis of doubly curved isotropic shells resting on elastic foundation by a combination of HDQ-FD methods", Int. J. Press Vessel Pip., 82(6), 470-479.   DOI
5 Yeh, M.K., Tai, N.H. and Liu, J.H. (2006), "Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes", Carbon, 44(1), 1-9.   DOI
6 Zenkour, A.M. (2005a), "A comprehensive analysis of functionally graded sandwich plates. Part 1-deflection and stresses", Int. J. Solid Struct., 42(1), 5224-5242.   DOI
7 Zenkour, A.M. (2005b), "A comprehensive analysis of functionally graded sandwich plates. Part 1-buckling and free vibration deflection and stresses", Int. J. Solid Struct., 42(18), 5243-5258.   DOI
8 Fantuzzi, N., Tornabene, F., Bacciocchi, M. and Dimitri, R., (2016), "Free vibration analysis of arbitrarily shaped functionally carbon nanotube-reinforced plates", Composites: Part B, 115(1), 384-408.
9 Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte K. and Wagner, H.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Composites: Part A, 36(11), 1555-1561.   DOI
10 Gang, S.W., Lam, K.Y. and Reddy, J.N. (1999), "The elastic response of functionally graded cylindrical shells to low-velocity", Int. J. Impact Eng., 22(4), 397-417.   DOI
11 Ghavamian, A., Rahmandoust, M. and O chsner, A. (2012), "A numerical evaluation of the influence of defects on the elastic modulus of single and multi-walled carbon nanotubes", Comput. Mater. Sci., 62, 110-116.   DOI
12 Gojny, F.H., Wichmann, M.H.G., Fiedler, B. and Schulte K. (2005), "Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-A comparative study", Compos. Sci. Technol., 65(15-16), 2300-2313.   DOI
13 Gunawan, H. and Sato, M. (2006), "Free vibration characteristics of cylindrical shells partially buried in elastic foundations", J. Sound Vib., 290(3-5), 785-793.   DOI
14 Halpin, J.C. and Tsai, S.W. (1969), "Effects of environmental factors on composite materials", AFML-TR-67-423.
15 Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41(3), 309-324.   DOI
16 Heshmati, M. and Yas, M.H. (2013), "Vibrations of non-uniform functionally graded MWCNTs-polystyrene nanocomposite beams under action of moving load", Mater. Des., 46, 206-218.   DOI
17 Hong, M. and Lee, U. (2015), "Dynamics of a functionally graded material axial bar, Spectral element modeling and analysis", Composites: Part B, 69, 427-434.   DOI
18 Kamarian, S., Yas, M.H., and Pourasghar, A. (2013), "Free vibration analysis of three-parameter functionally graded material sandwich plates resting on Pasternak foundations", Sandw. Strut. Mater., 15(3) 292-308.
19 Kashtalyan, M. and Menshykova, M. (2009), "Three-dimensional elasticity solution for sandwich panels with a functionally graded core", Compos. Struct., 87(1), 36-43.   DOI
20 Li, Q., Iu, V.P. and Kou, K.P. (2008), "Three-dimensional vibration analysis of functionally graded material sandwich plates", J. Sound Vib., 311(1-2), 498-515.   DOI
21 Marin, M. (2010), "A domain of influence theorem for microstretch elastic materials, Nonlinear Anal. Real World Appl., 11(5), 3446-3452.   DOI
22 Marin, M. and Lupu, M. (1998), "On harmonic vibrations in thermoelasticity of micropolar bodies", J. Vib. Control, 4(5), 507-518.   DOI
23 Marin, M. and Marinescu, C. (1998), "Thermoelasticity of initially stressed bodies. Asymptotic equipartition of energies", Int. J. Eng. Sci., 36(1), 73-86.   DOI
24 Martone, A., Faiella, G., Antonucci, V., Giordano, M. and Zarrelli, M. (2011), "The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix", Compos. Sci. Technol., 71(8), 1117-1123.   DOI
25 Park, W.T., Han, S.C., Jung, W.Y. and Lee, W.H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., 22(6), 1239-1259.   DOI
26 Matsunaga, H. (2008), "Free vibration and stability of functionally graded shallow shells according to a 2-D higher-order deformation theory", Compos. Struct., 84(2), 132-146.   DOI
27 Montazeri, A., Javadpour, J., Khavandi, A., Tcharkhtchi, A. and Mohajeri, A. (2010), "Mechanical properties of multi-walled carbon nanotube/epoxy composites", Mater. Des., 31, 4202-4208.   DOI
28 Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2016), "Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube", Steel Compos. Struct., 22(2), 277-299.   DOI
29 Paliwal, D.N., Kanagasabapathy, H. and Gupta, K.M. (1995), "The large deflection of an orthotropic cylindrical shell on a Pasternak foundation", Compos. Struct., 31, 31-37.   DOI
30 Paliwal, D.N., Pandey, R.K. and Nath, T. (1996), "Free vibration of circular cylindrical shell on Winkler and Pasternak foundation", Int. J. Press. Vessel Pip., 69(1), 79-89.   DOI
31 Patel, B.P., Gupta, S.S., Loknath, M.S.B. and Kadu, C.P. (2005), "Free vibration analysis of functionally graded elliptical cylindrical shells using higher-order theory", Compos. Struct., 69(3), 259-270.   DOI
32 Pelletier Jacob, L. and Vel Senthil, S. (2006), "An exact solution for the steady state thermo elastic response of functionally graded orthotropic cylindrical shells", Int. J. Solid Struct., 43(5), 1131-1158.   DOI
33 Pradhan, S.C., Loy, C.T., Lam, K.Y., Reddy, J.N. (2000). "Vibration characteristic of functionally graded cylindrical shells under various boundary conditions", Appl. Acoust., 61(1), 119-129.
34 Sobhani Aragh, B. and Yas, M.H. (2010), "Static and free vibration analyses of continuously graded fiber-reinforced cylindrical shells using generalized power-law distribution", Acta Mech., 215(1), 155-173.   DOI
35 Abrate, S. (1998), "Impact on composite structures", Cambridge UK: Cambridge University Press.
36 Affdl Halpin, J.C. and Kardos, J.L. (1976), "The Halpin-Tsai equations: A review", Polym. Eng. Sci., 16(5), 344-352.   DOI
37 Pradyumna, S. and Bandyopadhyay, J.N. (2008), "Free vibration analysis of functionally graded panels using higher-order finiteelement formulation", J. Sound Vib., 318(1-2), 176-192.   DOI
38 Shakeri, M., Akhlaghi, M. and Hosseini, S.M. (2006), Vibration and radial wave propagation velocity in functionally graded thick hollow cylinder", J Compos. Struct., 76(1), 174-181.   DOI
39 Shu, C. (2000), Differential quadrature and its application in engineering. Springer, Berlin.
40 Sobhani Aragh, B. and Yas, M.H. (2010), "Three dimensional free vibration of functionally graded fiber orientation and volume fraction of cylindrical panels", Mater. Des., 31(9), 4543-4552.   DOI
41 Tahouneh, V. (2014), "Free vibration analysis of bidirectional functionally graded annular plates resting on elastic foundations using differential quadrature method", Struct. Eng. Mech., 52(4), 663-686.   DOI
42 Tahouneh, V. (2016), "Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates", Steel Compos. Struct., 20(3), 623-649.   DOI
43 Tahouneh, V. and Naei, M.H. (2014), "A novel 2-D six-parameter power-law distribution for three-dimensional dynamic analysis of thick multi-directional functionally graded rectangular plates resting on a two-parameter elastic foundation", Meccanica, 49(1), 91-109.   DOI
44 Tornabene, F. (2009), "Free vibration analysis of functionally graded conical cylindrical shell and annular plate structures with a fourparameter power-law distribution", Comput. Meth. Appl. Mech. Eng., 198(37), 2911-2935.   DOI
45 Bellman, R. and Casti, J. (1971), "Differential quadrature and long term integration", J. Math. Anal. Appl., 34(2), 235-238.   DOI
46 Anderson, T.A. (2003), "3D elasticity solution for a sandwich composite with functionally graded core subjected to transverse loading by a rigid sphere", Compos. Struct., 60(3), 265-274.   DOI
47 Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections", Steel Compos. Struct., 18(3), 659-672.   DOI
48 Barka, M., Benrahou, K.H., Bakora, A. and Tounsi, A. (2016), "Thermal post-buckling behavior of imperfect temperaturedependent sandwich FGM plates resting on Pasternak elastic foundation", Steel Compos. Struct., 22(1), 91-112.   DOI
49 Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higherorder shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct.,, 19(3), 521-546.   DOI
50 Bouchafa, A., Bouiadjra, M.B., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., 18(6), 1493-1515.   DOI
51 Bouguenina, O., Belakhdar, K., Tounsi, A. and Bedia, E.A.A. (2015), "Numerical analysis of FGM plates with variable thickness subjected to thermal buckling", Steel Compos. Struct., 19(3), 679-695.   DOI
52 Brischetto, S., Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2015), "Refined 2D and exact 3D shell models for the free vibration analysis of single- and double-walled carbon nanotubes", Technologies, 3(4), 259-284.   DOI
53 Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016a), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Composites: Part B, 89(1), 187-218.   DOI
54 Tornabene, F. and Ceruti, A. (2013), "Mixed static and dynamic optimization of four-parameter functionally graded completely doubly curved and degenerate shells and panels using GDQ method", Math. Probl. Eng., 1-33.
55 Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2014), "Free vibrations of free-form doubly curved shells made of functionally graded materials using higher-order equivalent single layer theories", Composites: Part B, 67(1), 490-509.   DOI
56 Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2016b), "Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes", Composites: Part B, 115(1), 449-476.
57 Viola, E., and Tornabene, F. (2009), "Free vibrations of threeparameter functionally graded parabolic panels of revolution", Mech. Res. Commun., 36(5), 587-594.   DOI
58 Wagner, H.D., Lourie, O. and Feldman, Y. (1997), "Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix", Appl. Phys. Lett., 72(2), 188-190.   DOI
59 Wu, C.P. and Liu, Y.C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22(1), 161-182.   DOI
60 Yang, J. and Shen, S.H. (2003), "Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels", J. Sound Vib., 261(5), 871-893.   DOI
61 Cai, J.B., Chen W.Q., Ye, G.R. and Ding, H.J. (2000), "On natural frequencies of a transversely isotropic cylindrical panel on a kerr foundation", J. Sound Vib., 232(5), 997-1004.   DOI