• Title/Summary/Keyword: Shape Space

Search Result 2,101, Processing Time 0.029 seconds

A Study on Petrographic Characteristics and Provenance for the Rock Properties from Dorim-ri Tombs of Baekje Kingdom in Cheonan, Korea (천안 도림리 백제시대 분묘 유적 석재의 암석기재적 특성과 원산지 연구)

  • Lee, Chan Hee;Cho, Jihyun;Park, Sung Mi
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.477-490
    • /
    • 2021
  • We analyzed the provenance and petrographic characteristics for the rock properties from stone-lined tomb and stone chamber tomb at the Dorim-ri site of the Baekje Kingdom, located in Cheonan. The two tombs consist of 10 kinds of rocks including gneiss, diorite, and andesite. The major rock type is gneiss (54.3%), which composes the main chamber walls of the tombs. Diorite (11.3%) and andesite (10.6%) also make up a large percentage of the rocks, tending to be used to fill the space between the main chamber walls. Thus, the stones appear to have been used according to their shape and the disposition of the site, respectively. Investigation of their provenance, confirmed their source area to be near the Ipjang Reservoir, about 1 km away from the site, and their procurement was probably conducted via a waterway. This result might serve as basic data regarding the material procurement system of ancient tomb culture and for preservation measures for archaeological sites.

Control of MR Haptic Simulator Using Novel S-chain Model (새로운 S-Chain 모델을 이용한 MR 햅틱 시뮬레이터 제어)

  • Oh, Jong-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.291-297
    • /
    • 2018
  • Due to difficulty in minimally invasive surgery, training simulator is actively researched. A volumetric deformable organ is created by employing a shape-retaining chain-linked (S-chain) model to realize positioning a human organ model in virtual space. Since the main principle of the S-chain algorithm is that the repulsive force is proportional to the number of chain elements, the calculation time can be increased according to the magnitude of deformation. In this work, the advanced S-chain algorithm is used to calculate the repulsive torque according to spin motion. Finally, haptic architecture was constructed using this S-chain model by incorporating the virtual organ with a real master device, which allows the repulsive force and target position to be transferred to each other. The control performance of S-chain algorithm has been evaluated via experiment.

A Study on the Characteristics of Modular Design Shown in Korean Traditional Clothing (한국 전통 의복에 나타난 모듈러 디자인 특성 연구)

  • Na, Yoo-Shin
    • Journal of Fashion Business
    • /
    • v.23 no.1
    • /
    • pp.49-63
    • /
    • 2019
  • The purpose of this study is to examine the characteristics of modular design observed in Korean traditional clothing. Modular design, which is one of the noticeable characteristics of modern fashion design emerged in the 20th century. This study analyzed the Korean traditional culture to investigate the characteristics that show similarities to the modular system in design. A traditional Korean house is composed of small structures called 'chae'. A traditional Korean building is composed of a basic unit space called 'kan', and the rooms are divided and recombined. Korean traditional interior design shows furniture, bedding and art works that could be used, folded then stored. Korean cuisine is served in combination with small dishes. Korean letters are combined in square shaped form to make writing and printing easy. Korean traditional clothing has a way of washing where clothing are disassembled, washed and then re-stitched. The pattern pieces are made to be rectangular shaped so that the fabric pieces can be kept in shape during washing. The rectangular shaped pattern pieces can be replaced and reused after washing. Tops and bottoms could be interchanged for color-coordination, because the shapes of the clothing were standardized. These features exhibit modular system in Korean traditional clothing design. Modular system design has common characteristics which have basic modules, pursue practical purpose, have interchangeability adapted to circumstances, and could be disassembled and re-combined. Korean traditional clothing illustrates different ways of practicing modular system, but has some common features to contemporary modular fashion design.

Haptic recognition of the palm using ultrasound radiation force and its application (초음파 방사힘을 이용한 손바닥의 촉각 인식과 응용)

  • Kim, Sun Ae;Kim, Tae Yang;Lee, Yeol Eum;Lee, Soo Yeon;Jeong, Mok Kun;Kwon, Sung Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.467-475
    • /
    • 2019
  • A high-intensity ultrasound wave generates acoustic streaming and acoustic radiation forces when propagating through a medium. An acoustic radiation force generated in a three-dimensional space can produce a solid tactile sensation, delivering spatial information directly to the human skin. We placed 154 ultrasound transmit elements with a frequency of 40 kHz on a concave circular dish, and generated an acoustic radiation force at the focal point by transmitting the ultrasound wave. To feel the tactile sensation better, the transmit elements were excited by sine waves whose amplitude was modulated by a 60 Hz square wave. As an application of ultrasonic tactile sensing, a region where tactile sense is formed in the air is used as an indicator for the position of the hand. We confirmed the utility of ultrasonic tactile feedback by implementing a system that provides the number of fingers to a machine by receiving the shape of the hand at the focal point where the tactile sense is detected.

Strength Variation with Inter-Layer Fill Factor of FDM 3D Printer (FDM 3D Printer의 층간 충진율에 따른 강도변화)

  • Kang, Yong-Goo;Kweon, Hyun-Kyu;Shin, Geun-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.66-73
    • /
    • 2019
  • Recently, FDM-type 3D printer technology has been developed, and efforts have been made to improve the output formability and characteristics further. Through this, 3D printers are used in various fields, and printer technologies are suggested according to usage, such as FDM, SLA, DLP, and SLM. In particular, the FDM method is the most widely used, and the FDM method technology is being developed further. The characteristics of the output are produced by the FDM-type 3D printer, which is determined by various factors, and particularly the perspective of the Inter-Layer Fill Factor, which is the volume ratio of the laminated material that exerts a direct influence. In this study, the Inter-Layer Fill Factor is theoretically obtained by presenting the internal space between each layer according to the laminate thickness as a cross-sectional shape model, and the cross section of the actual laminated sample is compared with the theoretical model through experiments. Then, the equation for the theoretical model is defined, and the strength change according to each condition (tensile strength of material, reduction slope, strength reduction rate, and output strength) is confirmed. In addition, we investigated the influence on the correlation and strength between laminate thickness and the Inter-Layer Fill Factor.

A Systematic Review of the Attributes of Interior Design Affecting User's Positive Emotions Measured via Bio-Signals (생체신호 기반 사용자의 긍정적인 감정에 영향을 미치는 실내디자인 특성에 관한 문헌고찰)

  • Kim, Sieun;Ha, Mikyoung
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.5
    • /
    • pp.83-91
    • /
    • 2020
  • Environmental conditions are known to impact human health and behavior, emotions such as pleasure, anxiety, and depression, and reduce stress. Interior design that elevates emotional comfort and satisfaction can help improve mental health and well-being. This study is a systematic review that analyzed previous empirical studies that explored the effect of interior design elements on the user's emotional response which is quantitatively evaluated by bio-signal and qualitatively evaluated through self-reported questionnaire surveys. This paper aims to derive the attributes of interior design and biometric indicators that affect the user's positive emotion through the synthesis of previous studies and to confirm the feasibility of measuring bio-signals as an objective evaluation tool for architectural design and as a quantitative research method. As a result of the review, the biometric data from EEG, fMRI, ECG, EMG, GSR, and eye-tracking were used to measure the participants' emotional responses, which were manifested as positive or negative depending on certain attributes of interior design such as the form, color, lighting, material and furniture. The attributes of interior design related to the positive emotional response were the curved shape, high ceiling, openness of space, and subdued tone colors. Standard lighting conditions and wooden spaces were related to stress reduction in terms of comfort and relaxation. The free arrangement of furniture was related to the user's positive emotions. On the other hand, consistent experimental protocols could not be found, and although the sample sizes of the studies were small, the studies have demonstrated the feasibility of the emotional response measurement by using the biometric data. Therefore this method can be a useful objective tool in the measurement of human-centric data in architectural design, and to develop the evidence-based design to induce positive emotions and minimize stress.

A Circular Load Stowing Scheme for Maintaining Weight Balance in Drones (드론 무게균형을 위한 원형의 부하 적재 방식)

  • Eun, Seongbae;Han, Sangsuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.314-319
    • /
    • 2021
  • Problems that satisfy various constraints while maintaining weight balance in ships or aircraft were studied. In addition, a study was conducted to solve the problem with a mathematical method under the condition that the shape and weight of the load are the same and the m×n (m and n are all odd) mesh structures. The problem is that the existing mathematical weight balancing method is not suitable for circular structures. In this paper, we studied the load stowing problem in a circular space where objects are loaded at the vertices of N equilateral polygons. Assuming that all N conformal polygons have an even number of angles, it was proved that a loading method that always maintains weight balance regardless of the variety of number of loads. By providing the structure and loading method of the drone loading ship, we showed that our method was appropriate.

A Development of an All-in-one Ironing System for All Style Pants (바지 형태에 구애받지 않는 융합 다림질 시스템 개발)

  • Kim, Keunsik;Kim, Jong-Hoon
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.1
    • /
    • pp.172-179
    • /
    • 2022
  • Unlike other processes such as washing, the ironing process in the laundry process is difficult to standardize and thus relies on manual labor. Unlike upper garments, pants have pleats at the waist as well as a crease line below the waist, Therefore, two separate ironing devices have been developed and used. However, in this method, problems such as additional worker input, space loss, and wrinkling of pants occur due to manual movement between processes, Consequently, a pants ironing device that combines the two equipments is required. The all-in-one pants ironing system described in this paper automatically sequentially irons the upper part and side of the pants regardless of the length, shape, and upper pleats of the pants. It also performs a self-diagnosis function while displaying the ironing progress on the user's monitor. As a result of this study, it became possible to double the amount of ironing and reduce power consumption by more than 20% compared to the case of using two independent equipment.

A Study on the Flow Analysis of Air-gap Wet Spinneret according to the Viscosity of Copolymerized Aramid Polymer (공중합 아라미드 중합체의 점도에 따른 기격습식 방사구금 유동 해석 연구)

  • Yeo, Dong-hyun;Lee, Jonh-huk;Lee, Jun-hee;Yu, Seong-hun;Park, Yong-tae;Sung, Jung-hoon;Sim, Jee-hyun
    • Textile Coloration and Finishing
    • /
    • v.34 no.1
    • /
    • pp.27-37
    • /
    • 2022
  • In this study, a study and interpretation of the spinning process in copolymerized aramid spinning was conducted. In order to proceed with the spinning process modeling and analysis, the spinning process was modeled through the physical property modeling of the spinning solution and the structural modeling of the spinneret, and structural stability and flow of the spinneret for this spinning were analyzed. After modeling the spinning solution and the spinneret in a virtual space, the pack pressure and flow rate when the spinning solution was discharged were simulated. Macroscopically, the structural stability of the spinneret was confirmed at the standard pack pressure (100 kg·f/cm2), and microscopically, the flow rate and pressure drop data of the spinning solution according to the L/D(Length (L)/Diameter (D)) value were analyzed. Based on the research and development of virtual engineering modeling and analysis, we present the possibility of changing the shape and mechanical properties of copolymer aramid fibers according to the spinning process.

Development of a ROS-Based Autonomous Driving Robot for Underground Mines and Its Waypoint Navigation Experiments (ROS 기반의 지하광산용 자율주행 로봇 개발과 경유지 주행 실험)

  • Kim, Heonmoo;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.32 no.3
    • /
    • pp.231-242
    • /
    • 2022
  • In this study, we developed a robot operating system (ROS)-based autonomous driving robot that estimates the robot's position in underground mines and drives and returns through multiple waypoints. Autonomous driving robots utilize SLAM (Simultaneous Localization And Mapping) technology to generate global maps of driving routes in advance. Thereafter, the shape of the wall measured through the LiDAR sensor and the global map are matched, and the data are fused through the AMCL (Adaptive Monte Carlo Localization) technique to correct the robot's position. In addition, it recognizes and avoids obstacles ahead through the LiDAR sensor. Using the developed autonomous driving robot, experiments were conducted on indoor experimental sites that simulated the underground mine site. As a result, it was confirmed that the autonomous driving robot sequentially drives through the multiple waypoints, avoids obstacles, and returns stably.