Browse > Article
http://dx.doi.org/10.15207/JKCS.2018.9.11.291

Control of MR Haptic Simulator Using Novel S-chain Model  

Oh, Jong-Seok (Division of Mechanical and Automotive Engineering, Kongju National University)
Publication Information
Journal of the Korea Convergence Society / v.9, no.11, 2018 , pp. 291-297 More about this Journal
Abstract
Due to difficulty in minimally invasive surgery, training simulator is actively researched. A volumetric deformable organ is created by employing a shape-retaining chain-linked (S-chain) model to realize positioning a human organ model in virtual space. Since the main principle of the S-chain algorithm is that the repulsive force is proportional to the number of chain elements, the calculation time can be increased according to the magnitude of deformation. In this work, the advanced S-chain algorithm is used to calculate the repulsive torque according to spin motion. Finally, haptic architecture was constructed using this S-chain model by incorporating the virtual organ with a real master device, which allows the repulsive force and target position to be transferred to each other. The control performance of S-chain algorithm has been evaluated via experiment.
Keywords
Repulsive Force; Smart Fluid; Magneto-Rheological (MR) Fluid; MR Clutch; S-Chain Model;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Gibson, S. F. (1997). 3D chainmail: a fast algorithm for deforming volumetric objects. Proceedings of the 1997 symposium on Interactive 3D graphics, 149-ff. DOI: 10.1145/253284.253324
2 Kim, S. Y., Park, J., & Kwon, D. S. (2005). Real-time haptic rendering of a high-resolution volumetric deformable object in a collaborative virtual environment. Advanced Robotics, 19(9), 951-975. DOI: 10.1163/156855305774307022   DOI
3 Park, J., Kim, S. Y., Son, S. W., & Kwon, D. S. (2002). Shape retaining chain linked model for real-time volume haptic rendering. In Volume Visualization and Graphics, Proceedings. IEEE/ACM SIGGRAPH Symposium, 65-72. DOI: 10.1109/SWG.2002.1226511
4 Song, B. K., Oh, J. S., & Choi, S. B. (2014). Design of a new 4-DOF haptic master featuring magnetorheological fluid. Advances in Mechanical Engineering, 6, 843498. DOI: 10.1155/2014/843498   DOI
5 Q. H. Nguyen, Y. M. Han, S. B. Choi & N. M. Wereley, (2007), Geometry Optimization of MR Valves Constrained in a Specific Volume Using the Finite Element Method", Smart Materials & Structures, 16 (6), 2242-2252. DOI: 10.1088/0964-1726/16/6/027   DOI
6 Lord Corporation, Lord Technical Data, http://www.lordfulfillment.com.
7 Y. M. Han & K. C. Jang. (2017). MR Haptic Device for Integrated Control of Vehicle Comfort Systems. Journal of the Korea Convergence Society. 8(12), 291-298. DOI: 10.15207/JKCS.2017.8.12.291   DOI
8 M. G. Cho. (2018). Design of 3-Sectored Oxygen Chamber with Automatic Control Function based on Embedded System. Journal of Convergence for Information Technology, 8(3), 71-77. DOI: 10.221.56/CS4SMB.2018.8.3.071   DOI
9 K. T. Kim & K. J. Lee. (2017). Performance Evaluation and Analysis of Zero Reduction Codes for Effective Dimming Control in Optical Wireless Communications using LED Lightings. Journal of Convergence for Information Technology, 7(3), 97-103. DOI: 10.22156/CS4SMB.2017.7.3.097   DOI
10 R. Abovitz. (2001). Digital surgery: the future of medicine and human-robot symbiotic interaction. Industrial Robot: An International Journal, 28(5), 401-406. DOI: 10.1108/EUM0000000005842   DOI
11 M. C. Cavusoglu, F. Tendick, M. Cohn & S. S. Sastry. (1999). A laparoscopic telesurgical workstation. IEEE Transactions on Robotics and automation, 15(4), 728-739. DOI: 10.1109/70.782027   DOI
12 W. H. Li, B. Liu, P. B Kosasih. & X. Z Zhang. (2007). A 2-DOF MR actuator joystick for virtual reality applications. Sensors and Actuators A: Physical, 137(2), 308-320. DOI: 10.1016/j.sna.2007.03.015   DOI
13 D. Senkal & H. Gurocak. (2009). Spherical brake with MR fluid as multi degree of freedom actuator for haptics. Journal of Intelligent Material Systems and Structures, 20(18), 2149-2160. DOI: 10.1177/1045389X09348925   DOI
14 Ahmadkhanlou, F., Washington, G. N., & Bechtel, S. E. (2009). Modeling and control of single and two degree of freedom magnetorheological fluid-based haptic systems for telerobotic surgery. Journal of Intelligent Material Systems and Structures, 20(10), 1171-1186. DOI: 10.1177/1045389X09102262   DOI
15 Yamaguchi, Y., Furusho, J., Kimura, S., & Koyanagi, K. (2005). Development of high-performance MR actuator and its application to 2-D force display. International Journal of Modern Physics B, 19(7), 1485-1491. DOI: 10.1142/S0217979205030487   DOI
16 Oh, J. S., Han, Y. M., Lee, S. R., & Choi, S. B. (2012). A 4-DOF haptic master using ER fluid for minimally invasive surgery system application. Smart Materials and Structures, 22(4), 045004. DOI: 10.1088/0964-1726/22/4/045004   DOI
17 Y. J. Park. (2014). Using High Brightness LED Light Source Controller for Machine Vision. The Society of Digital Policy & Management, 12(4), 311-318. DOI: 10.14400/JDC.2014.12.4.311
18 P. S. Shin, S. K. Kim & J. M. Kim. (2014). Intuitive Controller based on G-Sensor for Flying Drone. The Society of Digital Policy & Management, 12(1), 319-324. DOI: 10.14400/JDPM.2014.12.1.319