DOI QR코드

DOI QR Code

Control of MR Haptic Simulator Using Novel S-chain Model

새로운 S-Chain 모델을 이용한 MR 햅틱 시뮬레이터 제어

  • Oh, Jong-Seok (Division of Mechanical and Automotive Engineering, Kongju National University)
  • 오종석 (공주대학교 기계자동차공학부)
  • Received : 2018.08.16
  • Accepted : 2018.11.20
  • Published : 2018.11.28

Abstract

Due to difficulty in minimally invasive surgery, training simulator is actively researched. A volumetric deformable organ is created by employing a shape-retaining chain-linked (S-chain) model to realize positioning a human organ model in virtual space. Since the main principle of the S-chain algorithm is that the repulsive force is proportional to the number of chain elements, the calculation time can be increased according to the magnitude of deformation. In this work, the advanced S-chain algorithm is used to calculate the repulsive torque according to spin motion. Finally, haptic architecture was constructed using this S-chain model by incorporating the virtual organ with a real master device, which allows the repulsive force and target position to be transferred to each other. The control performance of S-chain algorithm has been evaluated via experiment.

의료 현장에서의 최소침습수술(MIS)의 어려움 때문에 시뮬레이터 훈련이 활발히 연구되고 있다. 이를 위해 본 연구에서는 S-chain모델을 사용하여 가상 장기와 변형과정을 표현하고 반발력 제공이 가능한 햅틱 시뮬레이터를 개발하고자 한다. S-chain알고리즘의 주요 원리는 반발력이 체인 요소의 수에 비례하는 것이며, 대상인 장기의 변형이 클수록 많은 계산시간을 요구한다. 이에 본 연구에서는 계산속도가 개선된 S-chain알고리즘을 회전움직임에 적용하여 제어성능을 평가하였다. 본 연구에서는 자기 점성 점성(MR) 유체를 사용하는 햅틱 마스터 시스템을 제안하고 S-chain모델을 개발한다. 결과적으로, 이 S-chain모델을 사용하여 가상의 장기와 실제 마스터 장치를 결합함으로써 반발력과 수술로봇의 좌표 위치를 서로 전달하는 햅틱 시스템을 구축하여, 햅틱 시뮬레이터의 제어 성능을 실험을 통해 평가하였다.

Keywords

OHHGBW_2018_v9n11_291_f0001.png 이미지

Fig. 1. Manufacture MR Hapctic Master

OHHGBW_2018_v9n11_291_f0002.png 이미지

Fig. 2. Concept of S-chain Algorithm

OHHGBW_2018_v9n11_291_f0003.png 이미지

Fig. 3. Configuration of New S-chain Algorithm

OHHGBW_2018_v9n11_291_f0004.png 이미지

Fig. 4. Deformed Object According to New S-chain Model

OHHGBW_2018_v9n11_291_f0005.png 이미지

Fig. 5. Experimental Apparatus of Control Test

OHHGBW_2018_v9n11_291_f0006.png 이미지

Fig. 6 Virtual Organ Results

OHHGBW_2018_v9n11_291_f0007.png 이미지

Fig. 7 Control Test Results

References

  1. R. Abovitz. (2001). Digital surgery: the future of medicine and human-robot symbiotic interaction. Industrial Robot: An International Journal, 28(5), 401-406. DOI: 10.1108/EUM0000000005842
  2. M. C. Cavusoglu, F. Tendick, M. Cohn & S. S. Sastry. (1999). A laparoscopic telesurgical workstation. IEEE Transactions on Robotics and automation, 15(4), 728-739. DOI: 10.1109/70.782027
  3. W. H. Li, B. Liu, P. B Kosasih. & X. Z Zhang. (2007). A 2-DOF MR actuator joystick for virtual reality applications. Sensors and Actuators A: Physical, 137(2), 308-320. DOI: 10.1016/j.sna.2007.03.015
  4. D. Senkal & H. Gurocak. (2009). Spherical brake with MR fluid as multi degree of freedom actuator for haptics. Journal of Intelligent Material Systems and Structures, 20(18), 2149-2160. DOI: 10.1177/1045389X09348925
  5. Ahmadkhanlou, F., Washington, G. N., & Bechtel, S. E. (2009). Modeling and control of single and two degree of freedom magnetorheological fluid-based haptic systems for telerobotic surgery. Journal of Intelligent Material Systems and Structures, 20(10), 1171-1186. DOI: 10.1177/1045389X09102262
  6. Yamaguchi, Y., Furusho, J., Kimura, S., & Koyanagi, K. (2005). Development of high-performance MR actuator and its application to 2-D force display. International Journal of Modern Physics B, 19(7), 1485-1491. DOI: 10.1142/S0217979205030487
  7. Oh, J. S., Han, Y. M., Lee, S. R., & Choi, S. B. (2012). A 4-DOF haptic master using ER fluid for minimally invasive surgery system application. Smart Materials and Structures, 22(4), 045004. DOI: 10.1088/0964-1726/22/4/045004
  8. Gibson, S. F. (1997). 3D chainmail: a fast algorithm for deforming volumetric objects. Proceedings of the 1997 symposium on Interactive 3D graphics, 149-ff. DOI: 10.1145/253284.253324
  9. Kim, S. Y., Park, J., & Kwon, D. S. (2005). Real-time haptic rendering of a high-resolution volumetric deformable object in a collaborative virtual environment. Advanced Robotics, 19(9), 951-975. DOI: 10.1163/156855305774307022
  10. Park, J., Kim, S. Y., Son, S. W., & Kwon, D. S. (2002). Shape retaining chain linked model for real-time volume haptic rendering. In Volume Visualization and Graphics, Proceedings. IEEE/ACM SIGGRAPH Symposium, 65-72. DOI: 10.1109/SWG.2002.1226511
  11. Song, B. K., Oh, J. S., & Choi, S. B. (2014). Design of a new 4-DOF haptic master featuring magnetorheological fluid. Advances in Mechanical Engineering, 6, 843498. DOI: 10.1155/2014/843498
  12. Q. H. Nguyen, Y. M. Han, S. B. Choi & N. M. Wereley, (2007), Geometry Optimization of MR Valves Constrained in a Specific Volume Using the Finite Element Method", Smart Materials & Structures, 16 (6), 2242-2252. DOI: 10.1088/0964-1726/16/6/027
  13. Lord Corporation, Lord Technical Data, http://www.lordfulfillment.com.
  14. Y. M. Han & K. C. Jang. (2017). MR Haptic Device for Integrated Control of Vehicle Comfort Systems. Journal of the Korea Convergence Society. 8(12), 291-298. DOI: 10.15207/JKCS.2017.8.12.291
  15. M. G. Cho. (2018). Design of 3-Sectored Oxygen Chamber with Automatic Control Function based on Embedded System. Journal of Convergence for Information Technology, 8(3), 71-77. DOI: 10.221.56/CS4SMB.2018.8.3.071
  16. K. T. Kim & K. J. Lee. (2017). Performance Evaluation and Analysis of Zero Reduction Codes for Effective Dimming Control in Optical Wireless Communications using LED Lightings. Journal of Convergence for Information Technology, 7(3), 97-103. DOI: 10.22156/CS4SMB.2017.7.3.097
  17. P. S. Shin, S. K. Kim & J. M. Kim. (2014). Intuitive Controller based on G-Sensor for Flying Drone. The Society of Digital Policy & Management, 12(1), 319-324. DOI: 10.14400/JDPM.2014.12.1.319
  18. Y. J. Park. (2014). Using High Brightness LED Light Source Controller for Machine Vision. The Society of Digital Policy & Management, 12(4), 311-318. DOI: 10.14400/JDC.2014.12.4.311