Browse > Article
http://dx.doi.org/10.5764/TCF.2022.34.1.27

A Study on the Flow Analysis of Air-gap Wet Spinneret according to the Viscosity of Copolymerized Aramid Polymer  

Yeo, Dong-hyun (Korea Dyeing and Finishing Technology Institute(DYETEC), Textile Virtual Engineering Research Center)
Lee, Jonh-huk (Korea Dyeing and Finishing Technology Institute(DYETEC), Textile Virtual Engineering Research Center)
Lee, Jun-hee (Korea Dyeing and Finishing Technology Institute(DYETEC), Textile Virtual Engineering Research Center)
Yu, Seong-hun (Korea Dyeing and Finishing Technology Institute(DYETEC), Textile Virtual Engineering Research Center)
Park, Yong-tae (TAEKWANG Industrial Co., Ltd)
Sung, Jung-hoon (TAEKWANG Industrial Co., Ltd)
Sim, Jee-hyun (Korea Dyeing and Finishing Technology Institute(DYETEC), Textile Virtual Engineering Research Center)
Publication Information
Textile Coloration and Finishing / v.34, no.1, 2022 , pp. 27-37 More about this Journal
Abstract
In this study, a study and interpretation of the spinning process in copolymerized aramid spinning was conducted. In order to proceed with the spinning process modeling and analysis, the spinning process was modeled through the physical property modeling of the spinning solution and the structural modeling of the spinneret, and structural stability and flow of the spinneret for this spinning were analyzed. After modeling the spinning solution and the spinneret in a virtual space, the pack pressure and flow rate when the spinning solution was discharged were simulated. Macroscopically, the structural stability of the spinneret was confirmed at the standard pack pressure (100 kg·f/cm2), and microscopically, the flow rate and pressure drop data of the spinning solution according to the L/D(Length (L)/Diameter (D)) value were analyzed. Based on the research and development of virtual engineering modeling and analysis, we present the possibility of changing the shape and mechanical properties of copolymer aramid fibers according to the spinning process.
Keywords
copolymer aramid; air gap wet spinning; finite element analysis; structural simulation; computational fluid dynamics; spinneret; viscocity;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 K. E. Perepelkin, I. V. Andreeva, E. A. Pakshver, and I. Y. Morgoeva, Thermal Characteristics of para-Aramid Fibres, Fibre Chemistry, 35(4), 265(2003).   DOI
2 S. Park, I. Kwon, J. Shim, J. Choi, S. Kim, M. Lee, and J. Lee, A Study on the Enhancement of Light Resistance of para-Aramid Fibers by TiO2 Sol-gel Synthesis, Textile Coloration and Finishing, 25(2), 126(2013).   DOI
3 S. M. Shebanov, I. K. Novikov, A. V. Pavlikov, O. B. Ananin, and I. A. Gerasimov, IR and Raman Spectra of Modern Aramid Fibers, Fibre Chemistry, 48(2), 158(2016).   DOI
4 G. M. Gonzalez, J. Ward, J. Song, K. Swana, S. A. Fossey, J. L. Palmer, and K. K. Parker, para-Aramid Fiber Sheets for Simultaneous Mechanical and Thermal Protection in Extreme Environments, Matter, 3(3), 742(2020).   DOI
5 J. Gao, X. Yang, and L. Huang, Numerical Prediction of Mechanical Properties of Rubber Composites Reinforced by Aramid Fiber under Large Deformation, Composite Structures, 201, 29(2018).   DOI
6 B. Yang, L. Wang, M. Zhang, J. Luo, Z. Lu, and X. Ding, Fabrication Applications and Prospects of Aramid Nanofiber, Advanced Functional Materials, 30(22), 2000186(2020).   DOI
7 K. Noritake, R. Kakihara, S. I. Kumagai, and J. T. Mizutani, An Aramid FRP Rod, In Fiber-Reinforced-Plastic(FRP) Reinforcement for Concrete Structures, Elsevier, 267, 353(1993).
8 D. Seo, J. Bae, J. Lee, and H. Park, A Study on the Physical Properties of Aramid and Carbon Fiber Composite Materials Applied with Epoxy Resin, Textile Coloration and Finishing, 27(1), 11(2015).   DOI
9 S. Park, H. Son, J. Shim, J. Kim, T. Kim, and J. Bae, Surface Modification Effect and Mechanical Properties of para-Aramid Fibers using Low-temperature Plasma Treatment (2), Textile Coloration and Finishing, 27(1), 18(2015).   DOI
10 M. E. Epstein and A. J. Rosenthal, Spinning of Polyamides from Sulfuric Acid Solution: Polymer Solubility and Coagulation Mechanisms, Textile Research Journal, 36(9), 813(1966).   DOI
11 L. Liu, Y. D. Huang, Z. Q. Zhang, and X. B. Yang, Effect of Ultrasound on Wettability between Aramid Fibers and Epoxy Resin, Journal of Applied Polymer Science, 99(6), 3172(2006).   DOI
12 H. Zhao, M. Zhang, S. Zhang, and J. Lu, Influence of Fiber Characteristics and Manufacturing Process on the Structure and Properties of Aramid Paper, Polymer-Plastics Technology and Engineering, 51(2), 134(2012).   DOI
13 J. Zhao, Effect of Surface Treatment on the Structure and Properties of para-Aramid Fibers by Phosphoric Acid, Fibers and Polymers, 14(1), 59(2013).   DOI
14 D. Tanner, J. A. Fitzgerald, and B. R. Phillips, The Kevlar Story-An Advanced Materials Case Study, Angewandte Chemie International Edition in English, 28(5), 649(1989).   DOI
15 S. J. Picken, S. V. Zwaag, and M. G. Northolt, Molecular and Macroscopic Orientational Order in Aramid Solutions: A Model to Explain the Influence of Some Spinning Parameters on the Modulus of Aramid Rarns, Polymer, 33(14), 2998(1992).   DOI
16 L. Yao, K. Kim, and J. Kim, Fabrication of meta-Aramid Fibrid by Precipitation, Fibers and Polymers, 13(3), 277(2012).   DOI
17 C. Teng, H. Li, J. Liu, H. Gu, H. Kong, and M. Yu, Effect of High Molecular Weight PPTA on Liquid Crystalline Phase and Spinning Process of Aramid Fibers, Polymers, 12(5), 1206(2020).   DOI
18 J. H. Hong, M. K. Ku, Y. Ahn, H. J. Kim, and H. Kim, Air-gap Spinning of Cellulose/ionic Liquid Solution and its Characterization, Fibers and Polymers, 14(12), 2015(2013).   DOI
19 E. Jeong, B. H. Lee, S. J. Doh, I. J. Park, and Y. S. Lee, Multifunctional Surface Modification of an Aramid Fabric via Direct Fluorination, Journal of Fluorine Chemistry, 141, 69(2012).   DOI