• 제목/요약/키워드: Shape Recovery Characteristics

검색결과 79건 처리시간 0.03초

하회마을을 모티브로 한 문화상품 디자인 개발 (Cultural Goods Development with Hahoe Village Motif)

  • 서석민
    • 한국가구학회지
    • /
    • 제27권2호
    • /
    • pp.96-103
    • /
    • 2016
  • This article is to develop test product as adopting motifs from Andong Hahoe Village registered in the UNESCO World Heritage. This study associates physiographic features and images of Hahoe Village with test product. In the research result of this study, the value of product and possibility of success of test product was found as follows. Firstly, Making the puzzle-oriented Desk Service Hahoe Village views by using 22 different styles & functional artworks. Secondly, Producing the tangible forms such as a tree, thatched cottage, arbor, tile-roofed house and ferryboat by casting technique. Thirdly, Designing the shape of the terrain by utilizing computer programing softwares such as CAD drawings and ARTCAM. Finally, Developing the mass-produce goods reflecting region historical and cultural characteristics. I expect this study may increase of interest of our country's culture and play several roles of the bridgehead for product development. Also I reconsider sensitivity recovery of users and our cultural value increase.

시판 양말의 물성에 관한 소비과학적 검사 (End-Uses Studies on the Physical Chemical Properties of Socks in the Market)

  • 조현혹
    • 대한가정학회지
    • /
    • 제19권2호
    • /
    • pp.143-149
    • /
    • 1981
  • Consumer consider the purpose for which they plan to use clothes when they purchase it, and the socks in textile products is evaluated in the same way. serviceability is judged by the extent to which the socks will be useful for its intended purpose. It should retain its original shape and size, good air permeability, good absorbency, good abrasion resistance, high fastness etc. Owing to importance of serviceability in socks, in this paper, these end-use requirement characteristics were tested. The results obtained were as follows: 1. Blend ratios were different between the indicated fiber contents on labels and the testing ones. 2. Air permeability was higher in the samples which contain less stitch density, and hydroscopicity was higher in those which contain natural fibers such as cotton and wool. 3. Shrinkage depended on the blend ratios of cotton and wool, and elastic recovery was better in the course direction than in the wale direction. 4. Pilling was conspicuous in the synthetic fibers such as polyester and nylon, and fastness of laundering and perspiration was higher in the fading grade than in the staining grade.

  • PDF

COLORNET: Importance of Color Spaces in Content based Image Retrieval

  • Judy Gateri;Richard Rimiru;Micheal Kimwele
    • International Journal of Computer Science & Network Security
    • /
    • 제23권5호
    • /
    • pp.33-40
    • /
    • 2023
  • The mainstay of current image recovery frameworks is Content-Based Image Retrieval (CBIR). The most distinctive retrieval method involves the submission of an image query, after which the system extracts visual characteristics such as shape, color, and texture from the images. Most of the techniques use RGB color space to extract and classify images as it is the default color space of the images when those techniques fail to change the color space of the images. To determine the most effective color space for retrieving images, this research discusses the transformation of RGB to different color spaces, feature extraction, and usage of Convolutional Neural Networks for retrieval.

복합재료 스트립과 스프링을 갖는 형상기억합금 작동기의 거동 (Behavior of a Shape Memory Alloy Actuator with Composite Strip and Spring)

  • 허석;황도연;최재원;박훈철;구남서
    • Composites Research
    • /
    • 제22권2호
    • /
    • pp.37-42
    • /
    • 2009
  • 이 논문은 형상기억합금 선재를 이용한 굽힘 작동기의 실험적인 설계방법을 다루고 있다. 제안된 굽힘 작동기는 유리섬유 프리프레그를 이용하여 만든 스트립, 스프링 그리고 형상기억합금 선재로 구성된다. 굽힘 작동기에서 스트립은 초기에 형상기억합금 선재에 초기하중을 가하기 위하여 굽힘 형태로 정되며, 스프링은 형상기억합금 선재가 작동 후 빠른 시간내에 초기 형상으로 돌아오기 위한 보조수단으로 사용된다. 먼저 형상기억합금 선재의 특성을 알아보기 위하여 시차주사열량계(DSC)를 이용한 실험, 여러 종류의 초기 하중을 가한 후 작동 성능 실험, 인장 시험, 온도 변화에 따른 기계적 거동을 조사하였다 이를 바탕으로 스트립, 스프링, 인가 전압에 의한 영향을 관찰하고 소모전력을 분석하여 굽힘 작동기를 설계하였다. 특정 조건을 갖는 굽힘 작동기는 낮은 소모전력으로 빠른 응답성능을 나다내었다.

선박용 송풍기의 날개 끝 간격과 정익이 성능에 미치는 영향에 대한 전산 유체 해석 (Computational and Experimental Study of Effects of Guide Vanes and Tip Clearances on Performances of Axial flow Fans)

  • 이승수;김학선;남광현;홍재익;천승현
    • 대한조선학회논문집
    • /
    • 제41권6호
    • /
    • pp.24-32
    • /
    • 2004
  • The effects of guide vanes and tip clearances on the characteristics nf axial flow fans are investigated both computationally and experimentally. Performance test of fans carried out in full scale shows considerable effects of tip clearance between rotor tip and duct on the characteristics of fans. The tested results are compared with the computation based on the finite volume method to solve the Navier-Stoke equations with $textsc{k}$-$\varepsilon$ turbulence model. The comparison shows good agreements between experimental and computational results. In addition, the effects of shape of guide vanes are numerically studied. The results show that increased volume of separated region around the guide vane reduces the recovery of tangential component of kinetic energy in the wake, resulting in loss of efficiency

수치해석을 이용한 열간 가변금형 성형특성 평가 (Numerical Study on Forming Characteristics of Hot Multi-Point Forming Die)

  • 이인규;이성윤;정명식;김병민;이상곤
    • 소성∙가공
    • /
    • 제27권4호
    • /
    • pp.236-243
    • /
    • 2018
  • A multi-point forming die (MPFD), which has been used for producing curved plates, is capable of forming various curved plates with just one MPFD. However, in real industries, an MPFD is difficult to be adopted since the structural properties, punch strength, elastic recovery correction and dimensional accuracy become problems. In order to overcome these problems, the hot multi-point forming die (HMPFD) was proposed in this study. This HMPFD commonly provide more less spring-back and forming load than conventional MPFD. Nevertheless, this process is very difficult to form the curved plate, because the final curved shape of the plate depends on many process variables such as the punch/nozzle arrangement (height and distance), the radius of punch, contact conditions between plate and punch. In this study, the forming characteristics of HMPFD and conventional MPFD are compared with each other through the finite element analysis.

강연선의 국부적 손상에 따른 응력 회복길이 분석 연구 (Study on Stress Recovery Length of 7-Wire Strand due to Local Damage)

  • 서동우;김병철;정규산;나원기;박기태
    • 한국산학기술학회논문지
    • /
    • 제18권12호
    • /
    • pp.150-156
    • /
    • 2017
  • 본 연구는 PSC(Post Tensioned Concrete) 교량 및 사장교(Cable Stayed Bridge) 등에 많이 적용되는 강연선의 국부적 손상에 따른 응력 회복길이를 분석하였다. 강연선은 PC 강선(Prestressing Strand)을 여러 줄을 꼬은 강재이며, 재료의 특성상 준공후 지속적으로 손상이 발생하며 부식 등이 주요 손상원인이다. 이에 따른 손상에 따른 성능저하가 발생하지만, 구조적인 특성상 케이블 내부의 손상 정도 및 응력 변화 패턴을 파악하기 어렵다. 교량에 적용된 케이블의 경우 설치 형상에 따라 채수 등에 따라 부식에 취약한 부분이 발생하며, 이로 인해 국부적인 손상이 발생할 수 있다. 본 연구는 교량 Post-Tensioning 또는 케이블 사장재에 주로 적용되는 강연선(7-Wire Strand)의 국부적 손상에 따른 성능저하 경향 및 응력 회복길이를 FEA 해석을 통하여 분석하였다. 향후 본 연구에서 구축하고자 하는 해석모델을 활용하여 PSC 교량 및 사장교 케이블 등의 안전성 평가 및 잔존수명 예측에 활용될 수 있을 것으로 사료된다.

Seismic behavior of properly designed CBFs equipped with NiTi SMA braces

  • Qiu, Canxing;Zhang, Yichen;Qi, Jian;Li, Han
    • Smart Structures and Systems
    • /
    • 제21권4호
    • /
    • pp.479-491
    • /
    • 2018
  • Shape memory alloys (SMA) exhibit superelasticity which refers to the capability of entirely recovering large deformation upon removal of applied forces and dissipating input energy during the cyclic loading reversals when the environment is above the austenite finish temperature. This property is increasingly favored by the earthquake engineering community, which is currently developing resilient structures with prompt recovery and affordable repair cost after earthquakes. Compared with the other SMAs, NiTi SMAs are widely deemed as the most promising candidate in earthquake engineering. This paper contributes to evaluate the seismic performance of properly designed concentrically braced frames (CBFs) equipped with NiTi SMA braces under earthquake ground motions corresponding to frequently-occurred, design-basis and maximum-considered earthquakes. An ad hoc seismic design approach that was previously developed for structures with idealized SMAs was introduced to size the building members, by explicitly considering the strain hardening characteristics of NiTi SMA particularly. The design procedure was conducted to compliant with a suite of ground motions associated with the hazard level of design-basis earthquake. A total of four six-story CBFs were designed by setting different ductility demands for SMA braces while designating with a same interstory drift target for the structural systems. The analytical results show that all the designed frames successfully met the prescribed seismic performance objectives, including targeted maximum interstory drift, uniform deformation demand over building height, eliminated residual deformation, controlled floor acceleration, and slight damage in the main frame. In addition, this study indicates that the strain hardening behavior does not necessarily impose undesirable impact on the global seismic performance of CBFs with SMA braces.

고에너지 밀링으로 제조된 폐디스플레이 패널 분말의 밀링시간에 따른 인듐 용출특성 (Characteristics of Indium Dissolution of Waste LCD Panel Powders Fabricated by High Energy Ball Milling (HEBM) Process with Milling Time)

  • 김효섭;성준제;이철희;홍현선;홍순직
    • 한국분말재료학회지
    • /
    • 제18권4호
    • /
    • pp.378-384
    • /
    • 2011
  • In this research, the indium dissolution properties of the waste LCD panel powders were investigated as a function of milling time fabricated by high-energy ball milling (HEBM) process. The particle morphology of waste LCD panel powders changed from sharp and irregular shape of initial cullet to spherical shape with an increase in milling time. The particle size quickly decreased to 15 ${\mu}m$ until the first minute, then decreased gradually about 6 ${\mu}m$ with presence of agglomerated particles after 5 minutes, which increased gradually reaching a uniform size of 13 ${\mu}m$ consist of agglomerated particles after 30 minutes. The glass recovery, after dissolution, was over 99% at initial cullet, which decreased to 90.1 and 78.6% with increasing milling time of 1 and 30 minute respectively, due to a loss in remaining powder of the surface ball and jar, as well as the filter paper. The dissolution amount of indium out of the initial cullet was 208 ppm before milling, turning into 223 ppm for the mechanically milled powder after 1 minute, and nearly 146~125 ppm with further increase in milling time because of the reaction surface decrease of powders due to agglomeration. With this process, maximum dissolving indium amount (223 ppm) could be achieved at a particle size of 15 ${\mu}m$ with 1 minute of milling.

공정인자들이 나노임프린트 리소그래피 공정에 미치는 영향에 대한 분자동역학 연구 (Molecular Dynamics Study on the Effect of Process Parameters on Nanoimprint Lithography Process)

  • 강지훈;김광섭;김경웅
    • Tribology and Lubricants
    • /
    • 제22권5호
    • /
    • pp.243-251
    • /
    • 2006
  • Molecular dynamics simulations of nanoimprint lithography NIL) are performed in order to investigate effects of process parameters, such as stamp shape, imprinting temperature and adhesive energy, on nanoimprint lithography process and pattern transfer. The simulation model consists of an amorphous $SiO_{2}$ stamp with line pattern, an amorphous poly-(methylmethacrylate) (PMMA) film and an Si substrate under periodic boundary condition in horizontal direction to represent a real NIL process imprinting long line patterns. The pattern transfer behavior and its related phenomena are investigated by analyzing polymer deformation characteristics, stress distribution and imprinting force. In addition, their dependency on the process parameters are also discussed by varying stamp pattern shapes, adhesive energy between stamp and polymer film, and imprinting temperature. Simulation results indicate that triangular pattern has advantages of low imprinting force, small elastic recovery after separation, and low pattern failure. Adhesive energy between surface is found to be critical to successful pattern transfer without pattern failure. Finally, high imprinting temperature above glass transition temperature reduces the imprinting force.