• 제목/요약/키워드: Shape Design Method

검색결과 3,050건 처리시간 0.037초

밀도 분포를 이용한 최적 위상 설계 시스템의 개발 (Development of CAD System for Optimal Topology Design using Density Distribution)

  • 정진평;이건우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.852-859
    • /
    • 1994
  • Optmal topology design is to search the optimal layout of the structure which can be used fot the shape of the conceptual design stage. Our objective is to maximize the stiffness of the structure under a material usage constraint. The density of each finite element is the design variable and its relationship with Young's modulus is expressed by quadratic form. The shape is represented by the entire density distribution, the structural analysis is performed by finite element method and the optimization is achieved by feasible direction method. Unlike optimality criteria method,feasible direction method can handle various problems simultaneously, that is, multi- objectives and multi-constraints. Total optimization time can be reduced by the approximation of the material property and fewer design variables than homogenization method. Topology optimization is applied to design the shape of ribs.

  • PDF

B-spline Curve Fitting 과 심플렉스법을 적용한 자동차 록업클러치 피스톤 형상최적설계에 관한 연구 (Study of Shape Optimization for Automobile Lock-up Clutch Piston Design with B-spline Curve Fitting and Simplex Method)

  • 김철;현석정;손종호;신세현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1334-1339
    • /
    • 2003
  • An efficient method is developed for the shape optimization of 2-D structures. The sequential linear programming is used for minimization problems. Selected set of master nodes are employed as design variables and assigned to move towards the normal direction. After adapting the nodes on the design boundary, the B-spline curves and mesh smoothing schemes are used to maintain the finite element in good quality. Finally, a numerical implementation of optimum design of an automobile torque converter piston subjected to pressure and centrifugal loads is presented. The results shows additional weight up to 13% may be saved after the shape optimization.

  • PDF

가이드 곡면을 이용한 곡명의 변형 (Surface Deformation Using Guide Surfaces)

  • 김성환
    • 한국CDE학회논문집
    • /
    • 제12권6호
    • /
    • pp.441-451
    • /
    • 2007
  • In this paper, the method to modify a surface through three dimensional vector field technique is presented, In this method two guide surfaces are required as a shape reference. One is the shape of original surface, the other is the target shape for the result surface. Proposed method is consists of two steps. The first step is to calculate the mapping points on original and target guide surfaces so that the shape error may be minimized. The second step is to construct the smooth vector field from mapping points of the first step. The developed method is applied to shoe design system which makes the surface modeling very easy and effective.

경계법을 이용한 형상최적화 문제의 설계민감도 해석 및 응용 (A Boundary Method for Shape Design Sensitivity Analysis for Shape Optimization Problems and its Application)

  • 최주호;곽현구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.355-362
    • /
    • 2004
  • An efficient boundary-based technique is developed for addressing shape design sensitivity analysis in various problems. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in problems. The formula, which is expressed in terms of the boundary solutions and shape variation vectors, can be conveniently used for gradient computation in a variety of shape design problems. While the sensitivity can be calculated independent of the analysis means, such as the finite element method (FEM) or the boundary element method (BEM), the FEM is used for the analysis in this study because of its popularity and easy-to-use features. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The supercavitating flow problem and fillet problem are chosen to illustrate the efficiency of the proposed methodology. Implementation issues for the sensitivity analysis and optimization procedure are also addressed in these problems.

  • PDF

Shape & Topology GAs에 의한 트러스의 단면, 형상 및 위상최적설계 (Size, Shape and Topology Optimum Design of Trusses Using Shape & Topology Genetic Algorithms)

  • 박춘욱;여백유;김수원
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.43-52
    • /
    • 2004
  • The objective of this study is the development of size, shape and topology discrete optimum design algorithm which is based on the genetic algorithms. The algorithm can perform both shape and topology optimum designs of trusses. The developed algerian was implemented in a computer program. For the optimum design, the objective function is the weight of trusses and the constraints are stress and displacement. The basic search method for the optimum design is the genetic algorithms. The algorithm is known to be very efficient for the discrete optimization. The genetic algorithm consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. The efficiency and validity of the developed size, shape and topology discrete optimum design algorithms were verified by applying the algorithm to optimum design examples

  • PDF

조수석 에어백 성능 개선을 위한 형상 설계연구 (A Study on Shape Design of the Passenger Airbag for Efficiency Improvement)

  • 양성훈;임종현;김승기;채수원
    • 한국자동차공학회논문집
    • /
    • 제25권2호
    • /
    • pp.242-249
    • /
    • 2017
  • In this study, the relationship between the shape of a passenger airbag and the possibility of injury is analyzed using the Taguchi method. The optimal shape combination is proposed for a design guideline that can reduce the possibility of injury to the dummy. The airbag FE model for analysis is obtained using a CAD system that can change the shape through several independent variables. The widths of the left / right, top / bottom, and back / forth direction of the airbag shape are set as the design factors, and the effect of the combination injury probability according to the shape is analyzed. The minimum geometric combinations are obtained using the orthogonal array method. The signal to noise ratio is calculated and the optimal shape combination is obtained through sensitivity analysis. The obtained optimal shape combination is compared with the possibility of injury of the initial airbag shape to confirm improved airbag performance.

유한요소법에 의한 이중 금속봉 압출 공정의 금형 형상 최적설계 (Die Shape Optimal Design in Bimetal Extrusion by The Finite Element Method)

  • 변상민;황상무
    • 소성∙가공
    • /
    • 제3권3호
    • /
    • pp.302-319
    • /
    • 1994
  • A new approach to die shape optimal design in bimetal extrusion of rods is presented. In this approach, the design problem is formulated as a constrained optimization problem incorporated with the finite element model, and optimization of the die shape is conducted on the basis of the design sensitivities. The combinations of the core and sleeve materials.

  • PDF

유한요소법을 이용한 고압유압펌프용 오목형 피스톤 조립체의 소켓 형상 설계 (Finite Element Approach to Socket Shape Design of a Concave Piston Assembly for a High Pressure Hydraulic Pump)

  • 엄재근;이민철;최인수;조유종;전만수
    • 대한기계학회논문집A
    • /
    • 제30권11호
    • /
    • pp.1433-1438
    • /
    • 2006
  • A systematic approach to socket shape design of a concave piston assembly for a high pressure hydraulic pump of an excavator is presented in this paper. A design model is given and a methodology of socket shape design is proposed. An axisymmetric rigid-plastic finite element method is employed for predicting the approximate socket shape formed by a rotary forming process as well as for simulating the test process for separating the shoe from the piston assembly designed. It is verified that the predictions are in good agreement with the experiments. The approach is successfully applied to developing an optimal concave piston assembly.

Bias 스프링을 이용한 형상기억합금 액츄에이터의 설계 방법 (Design Method for Shape Memory Alloy Actuator with Bias Spring)

  • 이승기;나승우
    • 센서학회지
    • /
    • 제7권6호
    • /
    • pp.437-445
    • /
    • 1998
  • Bias 스프링을 이용한 형상기억합금 액츄에이터는 양방향 동작기구로서 이용이 가능하다. 이러한 bias식 형상기억합금 액츄에이터를 설계하기 위해서는 발생력이나 작동변위 등의 설계 사양이 만족되도록 형상기억합금스프링 및 bias 스프링의 구조를 결정하여야 한다. 본 논문에서는 bias식 형상기억합금 액츄에이터의 설계방법으로서, 경험적 가정에 의존하는 기존의 방법과는 달리 주어진 설계 사양만으로부터 직접 설계가 가능한 새로운 방법을 제시하고 이를 실험결과와 비교하였다. 실험값도 설계값과 비교적 잘 일치하여 제시된 설계방법의 타당성 및 유용성을 검증하였다.

  • PDF

인발응력을 고려한 다단 형상인발 공정설계 (Process Design of Multi-pass Shape Drawing Considering the Drawing Stress)

  • 김성민;이상곤;이찬주;김병민;정명식;이선봉
    • 소성∙가공
    • /
    • 제21권4호
    • /
    • pp.265-270
    • /
    • 2012
  • In this study, a process design method for the multi-pass shape drawing is proposed with consideration of the drawing stress. First, the shape drawing load was calculated to evaluate the shape drawing stress, and the intermediate die shape was determined by using an electric field analysis and the average reduction ratio. In order to evaluate whether material yielding occurs at the die exit, the drawing stress was determined by using the calculated shape drawing load. Finally, FE-analysis and shape drawing experiments were conducted to validate the design of the multi-pass shape drawing process. From the results of the FE-analysis and shape drawing experiments, it was possible to produce a sound shape drawn product with the designed process. The dimensional tolerances of the product were within the allowable tolerances.