• 제목/요약/키워드: Shaft Rotation

검색결과 147건 처리시간 0.026초

회전기계의 전자기 축전류에 대한 이론 및 실험 (Theory and Experiment for Electromagnetic Shaft Current in Rotation Machinery)

  • 김재실
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.40-45
    • /
    • 1999
  • Electrical damages to critical parts in rotation machinery have caused may machinery failures and hours of costly downtime. The problem of shaft currents generated in non-electrical machines have puzzled both users and manufacturers of these machines. The main solution for preventing electro- magnetic type damage is to demagnetize all of the machinery parts, however this is costly and time consuming. Therefore a thorough investigation into the causes and physical characteristics of electro- magnetic shaft currents is needed. In this paper, the self excitation theory was developed for a simple model, and axial flux Faraday disk machine surrounded by a long solenoid. Experimental tests were conducted to investigate the physical characteristics on an electromagnetic self excitation rig. The theory showed that the directions of both the shaft rotation and the coil turns should e identical if self excitation is to occur. From the tests, the electromagnetic type shaft current had both AC and DC components occurred at all vibration frequencies. This could point to the way to detect small instabilities or natural frequency locations by monitoring shaft currents.

  • PDF

회전 날개에 의한 덕트 소음 저감에 관한 실험적 고찰 (An Experimental Investigation of Noise Reduction by Blades in a Duct)

  • 최성배;이재곤
    • 한국소음진동공학회논문집
    • /
    • 제13권5호
    • /
    • pp.357-363
    • /
    • 2003
  • There have been lots of studies on noise transmission analysis and noise reduction In ducts. In order to reduce the noise transmission in ducts. active noise cancellation techniques have often been employed and a rotation shaft with blades has sometimes been suggested. These Ideas were not successfully commercialized because of the limitation of real life such as size or application difficulties. This study investigated how a rotational shaft with blades could reduce the noise transmission in a duct. To do so, an assembly of the shaft and the $haft housing was built In the middle of a duct. and the clearance between the blades and the housing was 0.2 mm. The noise reduction was experimentally evaluated with respect to the number of blades. the rotation speed, and the rotation or stop. This paper showed that the noise reduction resulted in about 14∼19 dBA regardless of the three test conditions only If the blades always blocked the duct. And. the noise reduction increased due to the higher number of blades and the lower speed of the shaft.

Bi-spectrum for identifying crack and misalignment in shaft of a rotating machine

  • Sinha, Jyoti K.
    • Smart Structures and Systems
    • /
    • 제2권1호
    • /
    • pp.47-60
    • /
    • 2006
  • Bi-spectrum is a tool in the signal processing for identification of non-linear dynamic behvaiour in systems, and well-known for stationary system where components are non-linearly interacting. Breathing of a crack during shaft rotation is also exhibits a non-linear behaviour. The crack is known to generate 2X (twice the machine RPM) and higher harmonics in addition to 1X component in the shaft response during its rotation. Misaligned shaft also shows similar such feature as a crack in a shaft. The bi-spectrum method has now been applied on a small rotating rig to observe its features. The bi-spectrum results are found to be encouraging to distinguish these faults based on few experiments conducted on a small rig. The results are presented here.

중공축 모터를 이용한 회전아크에 관한 연구 (A Study on Rotating Arc Using Hollow Shaft Motor)

  • 김철희;나석주
    • Journal of Welding and Joining
    • /
    • 제18권5호
    • /
    • pp.49-54
    • /
    • 2000
  • High speed rotating arc process, forming a flat bead surface with shallow penetration depth, can be applied to the automatic seam tracking, because the amplitude of current waveform increases at high rotation speed. Two high speed arc rotation mechanisms have been developed in Japan and Germany b rotating the electrode nozzle using an external motor, which are used prevalently for narrow gap and conventional seam welding. In this study, a new rotation mechanism was developed by using a hallow shaft motor designed to be installed in the electrode nozzle. By rotating the welding arc, the amplitude of current waveform increases remarkably since the self-regulation of arc is not fully performed. Experiments show that the arc sensor with high-speed rotation arc has improved its responsiveness and sensitivity.

  • PDF

직렬 4기통 엔진용 밸런스 샤프트 모듈의 불평형 질량 및 베어링 위치 선정 (Optimal Location Issue on both Supporting Bearing and Unbalance Mass of the Balance Shaft Module in a Inline 4-Cylinder Engine)

  • 이동원;김찬중;배철용;이봉현
    • 한국자동차공학회논문집
    • /
    • 제18권4호
    • /
    • pp.1-7
    • /
    • 2010
  • Large quantity of bending deformation as well as irregular rotating torque fluctuation are the main struggles of the balance shaft module during a high speed rotation. Since two issues are much sensitive to the location of both supporting bearing and unbalance mass at a balance shaft, it is recommended to construct a design strategy on balance shaft at the early stage so as to save developing time and effort before approaches to the detailed design process. In this paper, an optimal design formulation is proposed to minimize the elastic strain energy due to bending as well as the kinematic energy of polar moment of inertia in rotation. Case studies of optimal design are conducted for different mass ratio as well as linear combination of objective function and its consequence reveals that global optimum of balance shaft model is existed over possible design conditions. Simulation shows that best locations of both supporting bearing and unbalance are globally 20% and 80%, respectively, over total length of a balance shaft.

드럼세탁기 축계의 설계개선 및 강도평가에 관한 연구 (A Study on Design Improvement and Strength Evaluation of Shafting System for Washing Machine)

  • 김의수;김상욱;김병민
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.154-162
    • /
    • 2006
  • By laying its drum horizontally, front-loaded washing machine mostly used in Europe that uses the head of the water to launder was appropriate for washing only small amount of laundry. However, the demands of customers are requiring front-loaded washing machine to handle big capacity laundry as well, and have faster rotation speed to increase drying ability. To meet such demands, more stress from bending and twisting are complexly loaded onto the shaft supporting the horizontal drum, causing problems in fracture strength and fatigue life. Shafting system is mainly divided into flange and shaft. Flange is located between the drum and shaft, transferring power from the shaft to drum, and acting as a supporter of the back of the drum. Shaft is connected from the flange to insert production, transferring power from the motor to drum, and mainly acting as stiffness against the horizontal weight of the shafting system. In this paper, strength analysis and experiment were executed on both the shaft and flange of front-loaded washing machine to suggest the design improvement of shafting system for big capacity, high-rotation drying. Also, verification of this evaluation was executed on fracture strength and fatigue life for studied shaft system.

고속 회전에칭을 이용한 미세공구의 개발 (Development of Micro Tool using High Speed Etching Process)

  • 김성헌;박준민;정해도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.959-962
    • /
    • 2000
  • In this study, the micro shaft was fabricated by high speed etching process. The integration of the kinetic energy of circumference and the effect of etching takes less time to fabricate the micro shaft than any other conventional methods. First, the end part of the rod(SKD11) was dipped in chemical solution(FeCl$_3$) and the rod rotated at high speed(3500-10000rpm). Experimental setup was simply composed of high speed motor. chemical solution and $\Phi$ 1 mm rod. The main factors of diameter control are chemical concentration, reaction time and rpm. has a result. the diameter of the dipped rod was decreased by 200${\mu}{\textrm}{m}$ by high speed rotation and its shape and surface was good. From this experiment, we found the possibility to manufacture micro shaft without very expensive equipment.

  • PDF

고속 복합재료 공기 주축부를 위한 추력베어링 설계 (Thrust Bearing Design for High-Speed Composite Air Spindles)

  • 방경근;이대길
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.1997-2007
    • /
    • 2002
  • Composite air spindles are appropriate for the high-speed and the high-precision machining as small hole drilling of printed circuit board (PCB) or wafer cutting for manufacturing semiconductors because of the low rotational inertia, the high damping ratio and the high fundamental natural frequency of composite shaft. The axial load and stiffness of composite air spindles fur drilling operation are determined by the thrust ben ring composed of the air supply part mounted on the housing and the rotating part mounted on the rotating shaft. At high-speed rotation, the rotating part of the thrust bearing should be designed considering the stresses induced by centrifugal force as well as the axial stiffness and the natural frequency of the rotating shaft to void the shaft from failure due to the centrifugal force and resonant vibration. In this work, the air supply part of the thrust bearing was designed considering the bending stiffness of the bearing and the applied load. The rotating part of the thrust bearing was designed through finite element analysis considering the cutting forces during manufacturing as well as the static and dynamic characteristics under both the axial and con trifugal forces during high-speed rotation.

해수펌프 임펠러 샤프트의 구조 재설계 (Structural Re-design of Seawater Pump Impeller Shaft)

  • 조규남
    • 한국해안·해양공학회논문집
    • /
    • 제22권5호
    • /
    • pp.326-332
    • /
    • 2010
  • 해수 임펠러샤프트의 각종 하중에 의한 파단과 이를 개선하기위한 재설계는 정적, 동적 해석을 통한 원인분석과 유한요소법을 이용하여 효과적으로 수행할 수 있다. 본 논문에서는 전형적인 임펠러 샤프트의 파손에 대한 원인 분석을 수행하고 관련된 재설계기법을 제시하였다. 일차적으로 정적구조해석을 수행하였고 다음으로 구조물의 외력과의 공진문제를 포함한 동적해석을 수행하였다. 구조해석은 ANSYS코드를 사용하였으며, 결과적으로 파단원인을 찾아 분석하였다. 주된 파단원인은 과도한 굽힘모멘트의 발생과 응력집중, 구조물의 외력과의 공진에 의한 것으로 분석되었다. 해수 임펠러샤프트의 파단과 관련된 재설계기법의 이론적 배경을 정립하였으며, 재설계기법의 적용성과 정적, 동적 샤프트 재설계에 대한 유용성을 제시하였다.

하이브리드 샤프트 설계 파라미터 변화에 따른 특성 연구 (A study on characteristics according to the parameter variation for hybrid shaft design)

  • 홍동표;김현식;홍용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.99-104
    • /
    • 2008
  • The Carbon fiber epoxy composite material and aluminum have many advantages about higher specific stiffness and good fatigue characteristics. basically, the propeller shaft of automobile must satisfy high natural frequency more than 9,200 rpm to satisfy high number of rotation and high torsion torque more than 2,700Nm. In these reason, studied natural frequency and torsion torque characteristics of shaft according to parameter variations with the outdiameter and thickness. From the torsion tester and natural frequency experiments FE analyses was compared vibration and torque characteristics of hybrid shaft Designed hybrid shaft was experimented through FFT analyzer and torsion tester each and satisfied that hybrid shaft reverence 60mm and thickness 5mm by a these experiment is most suitable. Therefore, that can manufacture existent steel two piece type propeller shaft to one piece type hybrid shaft.

  • PDF